教學計劃是教師根據學科要求和學生實際情況,有目的地組織和安排教學內容的一項工作。教學計劃范文八:初中地理教學計劃,讓學生了解世界各地的地理知識。
一次函數的性質教學設計(匯總14篇)篇一
這節課的教學主要使學生在原有基礎上,通過類比一次函數掌握二次函數圖象和性質,突出的是探索交流合作的方式。
在知識學習過程中給學生留有充分的思考與交流的時間和空間,讓學生經歷了畫圖、觀察、猜測、交流、反思等活動,借助圖形教學,形象直觀,體現了數形結合思想,激發了學生的學習興趣,培養學生的觀察、分析、歸納、概括能力,提高數學課堂教學的效率和效果,促使學生主動參與到“做”數學的活動中,從而更加深刻地認識最簡二次函數的性質。
對于本節課,我個人認為在教學思路上還是比較清晰的,重難點把握得還是比較準確的,復習時利用原來學過的函數圖像,讓學生說出增減性,很自然的就引發出了探究二次函數性質的問題以及利用具體的圖像,學生比較容易理解和掌握。
2011年10月21日來源:本站。
進入二次函數這一章節后,難點也就隨之而來了,因為這一章節中大部分的內容都是數形結合的知識,學生在這部分也一直是難點。在學習一次函數的時候,涉及到函數增減性的問題,當時的解決方法是讓學生動手去做,方法如下:首先做出一次函數的草圖,然后用左手從圖像的左到右移動,并且要求學生說出隨著x的增大(手由左向右的移動過程中x是一直在增大的),圖像是升高了還是降低了。最后把話說完整,隨著x的增大y是增大了還是減小了,這種方法在當時大部分學生還是能夠接受的。所以在二次函數的性質這節課之前我就決定了,還是用動手比劃的方法讓學生去理解增減性。
首先,讓學生理解想求出二次函數的增減性首先要從二次函數的一般式轉化為頂點式,目的在于通過頂點式就可以直接看出對稱軸,再給學生充分的時間讓學生發現,二次函數與一次函數的增減性是不同的,一次函數不用分段去說,而二次函數要求以對稱軸為分界點分段去說。在這些都準備好之后,告訴學生判斷增減性的要點:
(1)通過函數的頂點和開口方向,畫出二次函數的草圖。
(2)在草圖上標出對稱軸,然后用對稱軸把二次函數的定義域分成兩部分。
一次函數的性質教學設計(匯總14篇)篇二
1、在指數函數及反函數概念的基礎上,使學生掌握對數函數的概念,能正確描繪對數函數的圖像,掌握對數函數的性質,并初步應用性質解決簡單問題。
2、通過對數函數的學習,樹立相互聯系,相互轉化的觀點,滲透數形結合,分類討論的思想。
3、通過對數函數有關性質的研究,培養學生觀察,分析,歸納的思維能力,調動學生學習的積極性。
教學重點,難點。
重點是理解對數函數的定義,掌握圖像和性質。
難點是由對數函數與指數函數互為反函數的關系,利用指數函數圖像和性質得到對數函數的圖像和性質。
教學方法。
啟發研討式。
教學用具。
投影儀。
教學過程。
一。引入新課。
今天我們一起再來研究一種常見函數。前面的幾種函數都是以形式定義的方式給出的,今天我們將從反函數的角度介紹新的函數。
反函數的實質是研究兩個函數的關系,所以自然我們應從大家熟悉的函數出發,再研究其反函數。這個熟悉的函數就是指數函數。
提問:什么是指數函數?指數函數存在反函數嗎?
由學生說出是指數函數,它是存在反函數的。并由一個學生口答求反函數的過程:
由得。又的值域為,
所求反函數為。
那么我們今天就是研究指數函數的反函數-----對數函數。
2.8對數函數(板書)。
1、定義:函數的反函數叫做對數函數。
教師可提示學生從反函數的三定與三反去認識,從而找出對數函數的定義域為,對數函數的值域為,且底數就是指數函數中的,故有著相同的限制條件。
在此基礎上,我們將一起來研究對數函數的圖像與性質。
1、作圖方法。
提問學生打算用什么方法來畫函數圖像?學生應能想到利用互為反函數的兩個函數圖像之間的關系,利用圖像變換法畫圖。同時教師也應指出用列表描點法也是可以的,讓學生從中選出一種,最終確定用圖像變換法畫圖。
由于指數函數的圖像按和分成兩種不同的類型,故對數函數的圖像也應以1為分界線分成兩種情況和,并分別以和為例畫圖。
具體操作時,要求學生做到:
(1)指數函數和的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等)。
(2)畫出直線。
(3)的圖像在翻折時先將特殊點對稱點找到,變化趨勢由靠近軸對稱為逐漸靠近軸,而的圖像在翻折時可提示學生分兩段翻折,在左側的先翻,然后再翻在右側的部分。
學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出。
和的圖像。(此時同底的指數函數和對數函數畫在同一坐標系內)如圖:
2、草圖。
教師畫完圖后再利用投影儀將和的圖像畫在同一坐標系內,如圖:
然后提出讓學生根據圖像說出對數函數的性質(要求從幾何與代數兩個角度說明)。
3、性質。
(1)定義域:
(2)值域:
由以上兩條可說明圖像位于軸的右側。
(3)截距:令得,即在軸上的截距為1,與軸無交點即以軸為漸近線。
(4)奇偶性:既不是奇函數也不是偶函數,即它不關于原點對稱,也不關于軸對稱。
(5)單調性:與有關。當時,在上是增函數。即圖像是上升的。
當時,在上是減函數,即圖像是下降的。
之后可以追問學生有沒有最大值和最小值,當得到否定答案時,可以再問能否看待何時函數值為正?學生看著圖可以答出應有兩種情況:
當時,有;當時,有。
學生回答后教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函數值為正,當底數與真數在1的兩側時,函數值為負,并把它當作第(6)條性質板書記下來。
最后教師在總結時,強調記住性質的關鍵在于要腦中有圖。且應將其性質與指數函數的性質對比記憶。(特別強調它們單調性的一致性)。
對圖像和性質有了一定的了解后,一起來看看它們的應用。
三。簡單應用(板書)。
1、研究相關函數的性質。
例1.求下列函數的定義域:
(1)(2)(3)。
先由學生依次列出相應的不等式,其中特別要注意對數中真數和底數的條件限制。
2、利用單調性比較大小(板書)。
例2.比較下列各組數的大小。
(1)與;(2)與;
(3)與;(4)與。
讓學生先說出各組數的特征即它們的底數相同,故可以構造對數函數利用單調性來比大小。最后讓學生以其中一組為例寫出詳細的比較過程。
三。鞏固練習。
練習:若,求的取值范圍。
四。小結。
五。作業略。
板書設計。
一次函數的性質教學設計(匯總14篇)篇三
本節的主要內容是讓學生逐步形成用函數的觀點處理問題意識,體驗數形結合的思想方法。
教學時,能夠達到三維目標的要求,突出重點把握難點。能夠讓學生經歷數學知識的應用過程,關注對問題的分析過程,讓學生自己利用已經具備的知識分析實例。用函數的觀點處理實際問題的關鍵在于分析實際情境,建立函數模型,并進一步提出明確的數學問題,注意分析的過程,即將實際問題置于已有的知識背景之中,用數學知識重新理解(這是什么?可以看成什么?),讓學生逐步學會用數學的'眼光考察實際問題。同時,在解決問題的過程中,要充分利用函數的圖象,滲透數形結合的思想。
具體分析本節課,首先簡單的用幾分鐘時間回顧一下一次函數的基本理論,“學習理論是為了服務于實踐”的一句話,打開了本節課的課題,過渡自然。本節課用函數的觀點處理實際問題,主要圍繞著路程、價格這樣的實際問題,通過在速度一定的條件下路程與時間的關系,總價在單價一定的情形下,總價與數量的關系這幾個例題,認識到一次函數與實際問題的關系,在講解這幾個例子的時候,創設了學生熟悉的情境,如在建立一次函數模型進行預測的問題時,問學生:“你知道今年奧運會的撐桿跳高的記錄是多少?你能對它進行預測嗎?”,簡單的一句話引出問題,這樣更能引起學生的興趣,使學生更積極地參與到教學中來,因為情境熟悉,也能快速地與學生產生共鳴。創設了輕松和諧的教學環境與氛圍,師生互動較好,這樣能使學生主動開動思維,利用已有的知識順利的解決這幾個問題。在講解例題的同時,試著讓學生利用圖象解決問題,培養學生數形結合的思想,并提示學生注意自變量在實際情境中的取值范圍問題。
而后,給學生幾分鐘的思考時間,讓他們通過平時對生活的細心觀察,生活中有關一次函數的有價值的問題,說出來與全班共同分享。這一環節的設置,不僅體現新教改的合作交流的思想,更主要的培養他們與人協作的能力。更好的發展了學生的主體性,讓他們也做了一回小老師,展示他們的個性,這樣有益于他們健康的人格的成長。最后在總結中讓學生體會到利用一次函數解決實際問題,關鍵在于建立數學函數模型,并布置了作業。從總體看整個教學環節也比較完整。
這節課如果能利用多媒體課件幻燈片的方式展示出來,例題的展示將會更快點,整節課將會更加豐滿。當然,在教學實施中我也考慮到了這一點,所以在講解例題的時候將每個例題的要點以簡短的板書形式展示出來,在一定程度上也節省了時間。
一次函數的性質教學設計(匯總14篇)篇四
本節內容是人教版《義務教育課程標準實驗教科書·數學》八年級上冊“14.2.2一次函數”(第二課時)。
一、本課數學內容的本質、地位和作用分析。
二、教學目標分析。
三、教學問題診斷分析。
四、本節課的教法特點及預期效果分析。
3.八年級的學生好奇、好學、好動,所以在教學過程中通過讓學生自己動手畫圖,同學之間交流畫法,談談想法等活動,充分發揮學生的主體性,進一步激發學生的求知欲,課件中的動畫過程使數與形的關系可視化,有利于學生對問題的感知。
以上是我對這節課的教學設計的說明,不妥之處懇請各位專家批評指正。
一次函數的性質教學設計(匯總14篇)篇五
一次函數圖像,是北師大八年級上冊的內容。教學這一節時,我沒有按照課本的講解。我著這樣安排的,先講正比例函數的圖像和性質,用一課時,今天我就是講這一節。
先介紹函數的圖像、畫法。再畫正比例函數的圖像,引出正比例函數是經過原點的直線。接著介紹怎樣作正比例函數的圖像。用這種方法,作幾個正比例函數的圖像,總結規律。接著練習。
練習之后我備課時又有一個性質要介紹,由于時間的關系,沒有講解,就下課了!
反思:1、課堂中前段時間留給學生的時間長,沒完成課前準備的教學任務。
2、本節課講到第三個性質。
3、練習題要精而且少,難易適中。
4、注意課前準備,上課注意語言。函數教學反思反比例函數教學反思。
將本文的word文檔下載到電腦,方便收藏和打印。
一次函數的性質教學設計(匯總14篇)篇六
本節內容共安排2個課時完成。該節內容是二元一次方程(組)與一次函數及其圖像的綜合應用。通過探索方程與函數圖像的關系,培養學生數學轉化的思想,通過二元一次方程方程組的圖像解法,使學生初步建立了數(二元一次方程)與形(一次函數的圖像(直線))之間的對應關系,進一步培養了學生數形結合的意識和能力。本節要注意的是由兩條直線求交點,其交點的橫縱坐標為二元一次方程組的近似解,要得到準確的結果,應從圖像中獲取信息,確立直線對應的函數表達式即方程,再聯立方程應用代數方法求解,其結果才是準確的。
學生已有了解方程(組)的基本能力和一次函數及其圖像的基本知識,學習本節知識困難不大,關鍵是讓學生理解二元一次方程和一次函數之間的內在聯系,體會數和形間的相互轉化,從中使學生進一步感受到數的問題可以通過形來解決,形的問題也可以通過數來解決。
1、教學目標。
知識與技能目標。
(1)初步理解二元一次方程和一次函數的關系;
(2)掌握二元一次方程組和對應的兩條直線之間的關系;
(3)掌握二元一次方程組的圖像解法。
過程與方法目標。
(2)通過做一做引入例1,進一步發展學生數形結合的意識和能力。
(3)情感與態度目標。
(1)在探究二元一次方程和一次函數的對應關系中,在體會近似解與準確解中,培養學生勤于思考、精益求精的精神。
(2)在經歷同一數學知識可用不同的數學方法解決的過程中,培養學生的創新意識和變式能力。
2、教學重點。
(1)二元一次方程和一次函數的關系;
(2)二元一次方程組和對應的兩條直線的關系。
3、教學難點。
數形結合和數學轉化的思想意識。
1、教法學法。
啟發引導與自主探索相結合。
2、課前準備。
教具:多媒體課件、三角板。
學具:鉛筆、直尺、練習本、坐標紙。
本節課設計了六個教學環節:第一環節設置問題情境,啟發引導;第二環節自主探索,建立方程與函數圖像的模型;第三環節典型例題,探究方程與函數的相互轉化;第四環節反饋練習;第五環節課堂小結;第六環節作業布置。
第一環節:設置問題情境,啟發引導。
內容:1.方程x+y=5的解有多少個?是這個方程的解嗎?
2、點(0,5),(5,0),(2,3)在一次函數y=的圖像上嗎?
3、在一次函數y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4、以方程x+y=5的解為坐標的所有點組成的圖像與一次函數y=的圖像相同嗎?
由此得到本節課的第一個知識點:
二元一次方程和一次函數的圖像有如下關系:
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程。
意圖:通過設置問題情景,讓學生感受方程x+y=5和一次函數y=相互轉化,啟發引導學生總結二元一次方程與一次函數的對應關系。
效果:以問題串的形式,啟發引導學生探索知識的形成過程,培養了學生數學轉化的思想意識。
前面研究了一個二元一次方程和相應的一個一次函數的關系,現在來研究兩個二元一次方程組成的方程組和相應的兩個一次函數的關系。順其自然進入下一環節。
第二環節自主探索方程組的解與圖像之間的關系。
內容:1.解方程組。
2、上述方程移項變形轉化為兩個一次函數y=和y=2x,在同一直角坐標系內分別作出這兩個函數的圖像。
(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數表達式聯立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
意圖:通過自主探索,使學生初步體會數(二元一次方程)與形(兩條直線)之間的對應關系,為求兩條直線的交點坐標打下基礎。
效果:由學生自主學習,十分自然地建立了數形結合的意識,學生初步感受到了數的問題可以轉化為形來處理,反之形的問題可以轉化成數來處理,培養了學生的創新意識和變式能力。
第三環節典型例題。
探究方程與函數的相互轉化。
內容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是。
意圖:設計例1進一步揭示數的問題可以轉化成形來處理,但所求解為近似解。通過例2,讓學生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對應的函數表達式,把形的問題轉化成數來處理。這兩例充分展示了數形結合的思想方法,為下一課時解決實際問題作了很好的鋪墊。
效果:進一步培養了學生數形結合的意識和能力,充分展示了方程與函數的相互轉化。
第四環節反饋練習。
內容:1.已知一次函數與的圖像的交點為,則。
2、已知一次函數與的圖像都經過點a(2,0),且與軸分別交于b,c兩點,則的面積為()。
(a)4(b)5(c)6(d)7。
3、求兩條直線與和軸所圍成的三角形面積。
4、如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
意圖:4個練習,意在及時檢測學生對本節知識的掌握情況。
效果:加深了兩條直線交點的坐標就是對應的函數表達式所組成的方程組的解的印象,培養了學生的計算能力和數學轉化的能力,使學生進一步領悟到應用數形結合的思想方法解題的重要性。
第五環節課堂小結。
內容:以問題串的形式,要求學生自主總結有關知識、方法:
1、二元一次方程和一次函數的圖像的關系;
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程。
2、方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
3、解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強調的是由于作圖的不準確性,由圖像法求得的解是近似解。
意圖:旨在使本節課的知識點系統化、結構化,只有結構化的知識才能形成能力;使學生進一步明確學什么,學了有什么用。
第六環節作業布置。
習題7.7。
附:板書設計。
本節課在學生已有了解方程(組)的基本能力和一次函數及其圖像的基本知識的基礎上,通過教師啟發引導和學生自主學習探索相結合的方法,進一步揭示了二元一次方程和函數圖像之間的對應關系,從而引出了二元一次方程組的圖像解法,以及應用代數方法解決有關圖像問題,培養了學生數形結合的意識和能力,充分展示了方程與函數的相互轉化。教學過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準確性,所求的解往往是近似解。因此為了準確地解決有關圖像問題常常把它轉化為代數問題來處理,如例2及反饋練習中的4個問題。
一次函數的性質教學設計(匯總14篇)篇七
教學過程中教師應通過情境創設激發學生的學習興趣,對函數與圖像的對應關系應讓學生動手去實踐,去發現,對一次函數的圖象是一條直線應讓學生自己得出。在得出結論之后,讓學生能運用“兩點確定一條直線”,很快做出一次函數的圖像。在鞏固練習活動中,鼓勵學生積極思考,提高學生解決實際問題的能力。
根據學生狀況,教學設計也應做出相應的調整.如第一環節:探究新知,固然可以激發學生興趣,但也可能容易讓學生關注代數表達式的尋求,甚至部分學生形成一定的認知障礙,因此該環節也可以直接開門見山,直切主題,如提出問題:一次函數的代數形式是y=kx+b,那么,一個一次函數對應的圖形具有什么特征呢?今天我們就研究一次函數對應的圖形特征—本節課是學生首次接觸利用數形結合的思想研究一次函數圖象和性質,對他們而言觀察對象、探索思路、研究方法都是陌生的,因而在教學過程中我通過問題情境的創設,激發學生的學習興趣,引導學生觀察一次函數的圖像,探討一次函數的簡單性質,逐步加深學生對一次函數及性質的認識。本節課的重點是要學生了解正比例函數的確定需要一個條件,一次函數的確定需要兩個條件,能由條件求出一些簡單的一次函數表達式,并能解決有關現實問題。本節課設計注重發展了學生的數形結合的思想方法及綜合分析解決問題的能力及應用意識的培養,為后繼學習打下基礎。
由于這節課的知識容量較大,而且內容較難,我們所用的學案就能很好地幫助學生消化理解該知識,。在教學過程中,讓學生親自動手、動腦畫圖的方式,通過教師的引導,學生的交流、歸納等環節較成功地完成了教學目標,收到了較好的效果。但還存在著不盡人意的地方,由于課的內容容量較大,對于有些知識點,如“隨著x值的增大,y的值分別如何化?”,本應給學生更多的時間練習、討論,以幫助理解消化該知識,但由于時間緊,學生的這一活動開展的不充分。課堂氣氛不夠活躍,個別學生的主動性、積極性沒有充分調動起來。這是今后教學中應該注意的問題。
一次函數的性質教學設計(匯總14篇)篇八
《一次函數的應用》這節課的教學內容是湘教版版八年級數學上冊第二章第三節的內容。本節課討論了一次函數的某些應用,在這些實際應用中,備課時注意到與學生的實際生活相聯系,切實發生在學生的身邊的某些實際情境,并且注意用函數觀點來處理問題或對問題的解決用函數做出某種解釋,用以加深對函數的認識,并突出知識之間的內在聯系。本節的主要內容是讓學生逐步形成用函數的觀點處理問題意識,體驗數形結合的思想方法。
教學時,能夠達到三維目標的要求,突出重點把握難點。能夠讓學生經歷數學知識的應用過程,關注對問題的分析過程,讓學生自己利用已經具備的知識分析實例。用函數的觀點處理實際問題的關鍵在于分析實際情境,建立函數模型,并進一步提出明確的數學問題,注意分析的過程,即將實際問題置于已有的知識背景之中,用數學知識重新理解(這是什么?可以看成什么?),讓學生逐步學會用數學的眼光考察實際問題。同時,在解決問題的過程中,要充分利用函數的圖象,滲透數形結合的思想。
具體分析本節課,首先簡單的用幾分鐘時間回顧一下一次函數的基本理論,“學習理論是為了服務于實踐”的一句話,打開了本節課的課題,過渡自然。本節課用函數的觀點處理實際問題,主要圍繞著路程、價格這樣的實際問題,通過在速度一定的條件下路程與時間的關系,總價在單價一定的情形下,總價與數量的關系這幾個例題,認識到一次函數與實際問題的關系,在講解這幾個例子的時候,創設了學生熟悉的情境,如在建立一次函數模型進行預測的問題時,問學生:“你知道今年奧運會的撐桿跳高的記錄是多少?你能對它進行預測嗎?”,簡單的一句話引出問題,這樣更能引起學生的興趣,使學生更積極地參與到教學中來,因為情境熟悉,也能快速地與學生產生共鳴。創設了輕松和諧的教學環境與氛圍,師生互動較好,這樣能使學生主動開動思維,利用已有的知識順利的解決這幾個問題。
在講解例題的同時,試著讓學生利用圖象解決問題,培養學生數形結合的思想,并提示學生注意自變量在實際情境中的取值范圍問題。而后,給學生幾分鐘的思考時間,讓他們通過平時對生活的細心觀察,生活中有關一次函數的有價值的問題,說出來與全班共同分享。這一環節的設置,不僅體現新教改的合作交流的思想,更主要的培養他們與人協作的能力。更好的發展了學生的主體性,讓他們也做了一回小老師,展示他們的個性,這樣有益于他們健康的人格的成長。最后在總結中讓學生體會到利用一次函數解決實際問題,關鍵在于建立數學函數模型,并布置了作業。從總體看整個教學環節也比較完整。
這節課如果能利用多媒體課件幻燈片的方式展示出來,例題的展示將會更快點,整節課將會更加豐滿。當然,在教學實施中我也考慮到了這一點,所以在講解例題的時候將每個例題的要點以簡短的板書形式展示出來,在一定程度上也節省了時間。
一次函數的性質教學設計(匯總14篇)篇九
3.直線y=kx+b與方程的聯系。
那么一元一次不等式與一次函數是怎樣的關系呢?本節課研究一元一次不等式與一次函數的關系。
教師活動:引導學生回顧一次函數相關概念以及一次函數與方程的關系。
設計意圖:回顧所學知識作好新知識的銜接。
二、導探激勵。
問題1:我們來看下面兩個問題有什么關系?
1.解不等式5x+63x+10.。
2.當自變量x為何值時函數y=2x—4的值大于0?
問題2:作出函數y=2x—5的圖象,觀察圖象回答下列問題:
(1)x取何值時,2x—5=0?
(2)x取哪些值時,2x—50?
(3)x取哪些值時,2x—50?
(4)x取哪些值時,2x—53?
教師活動:展示問題1,適當時間后請學生解答并說明理由,教師借助課件作結論性評判。
設計意圖:問題2可以直接解不等式(或方程)求解,但這里意圖是讓學生通過直接圖。
象得到。引導學生體會既可以運用函數圖象解不等式,也可以運用解不等式幫助研究函數問題,二者互相滲透,互相作用。
學生可以用不同方法解答,教師意圖是盡量用圖象求解。
問題3:用畫函數圖象的方法解不等式5x+42x+10。
學生活動:在教師指導下,順利完成作圖,觀察求出答案,并能歸納總結出其特點.活動過程及結論:
種函數觀點認識問題的方法,對于繼續學習數學很重要.。
三、鞏固練習。
2.利用圖象解出x:
6x—43x+2.。
四.隨堂練習。
2.利用圖象解不等式5x—12x+5.。
五.課時小結。
六.課后作業。
習題14.3─3、4、7題.。
七.活動與探究。
教學反思:
本堂課在設計上可以跳出教材,根據學生的實際情況,在問題1中可設計一。
個簡單一點的不等式,待學生會將不等式轉化為一次函數分析并用圖像解決時在增加難度,放在問題3中一并解決,這樣學生在接受上不會太難,也不會導致時間分配不合理,以至設計的內容無法完成。另外,這充分發揮學生的主體性,讓學生通過觀察及操作發現一次函數與一元一次不等式的關系及用一次函數解決一元一次不等式的方法。
一次函數的性質教學設計(匯總14篇)篇十
知識目標:了解二元一次方程、二元一次方程組及其解等有關概念,并會判斷一組數是不是某個二元一次方程組的解。
能力目標:通過討論和練習,進一步培養學生的觀察、比較、分析的能力。
情感目標:通過對實際問題的分析,使學生進一步體會方程是刻畫現實世界的有效數學模型,培養學生良好的數學應用意識。
判斷一組數是不是某個二元一次方程組的解,培養學生良好的數學應用意識。
一、引入、實物投影。
2、請每個學習小組討論(討論2分鐘,然后發言)。
這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數,我們設老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數比小馬多2個,由此得方程x-y=2,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)。
師:同學們能用方程的。方法來發現、解決問題這很好,上面所列方程有幾個未知數?含未知數的項的次數是多少?(含有兩個未知數,并且所含未知數項的次數是1)。
師:含有兩個未知數,并且含未知數項的次數都是1的方程叫做二元一次方程。
一次函數的性質教學設計(匯總14篇)篇十一
3、經歷一次函數概念的認識,和利用一次函數解決實際問題的過程,逐步認識利用函數觀點認識現實世界的意識和能力。
一次函數的概念以及一次函數和正比例函數的關系。
理解一次函數和正比例函數的關系。
引導發現、探究指導。
自主學習、合作學習。
多媒體。
一、情景引入。
母親節快到了,紅紅想送一大束康乃馨給媽媽,花店老板告訴她,若買10支以及10支以下,每支3元,買10支以上,超過的部分打8折,如果紅紅買了x支康乃馨(x10),付給老板y元錢,請寫出y與x之間的函數關系式。
二、探究新知。
1、下列問題中,變量之間的對應關系是函數關系嗎?如果是,請寫出函數解析式?
(4)把一個長10cm,寬5cm的矩形的長減少xcm,寬不變,矩形面積y(單位:cm2)隨x的值而變化。
2、這些函數解析式有哪些共同特征?
3、你能仿照正比例函數的概念,歸納總結出一次函數的概念嗎?
4、一次函數和正比例函數有什么關系?
三、展示歸納(學生做后,解答過程學生說老師寫,發動學生糾正和完善并總結歸納出一次函數的概念)。
1、學生先用獨立思考,在進行小組討論,老師準備板書,巡回指導,了解情況;
2、學生逐一回答,其他學生逐一補充完善;
3、教師火龍點睛,強調關鍵。
四、練習鞏固(過渡語:了解了一次函數的概念之后下面老師就來檢驗一下同學們,看看同學們能判斷一個函數是一次函數嗎?)(每個練習先讓學生做,教師巡回指導,然后讓有一定問題的學生匯報展示,發動學生評價完善,教師強調關鍵地方,在進行下一個練習)。
練習1下列函數中哪些是一次函數,哪些又是正比例函數?
(1)y=—8x;(2)y=—;(3)y=5x+6;(4)y=—0。5x—1;
(5)y=—1;(6)y=—13;(7)y=2(x—4);(8)y=。
練習2已知一次函數y=kx+b,當x=1時,y=5;當x=—1時,y=1。求k和b的值。
五、小結與歸納(由學生來陳述,百花齊放。教師不做限定,沒說到的,教師補充。)。
1、通過本節課的學習,你有何收獲?
2、反思一下你所獲得的經驗,與同學交流!
六、作業:必做題:教科書第91頁第3題;
選做題:請寫出若干個變量y與x之間的函數解析式,讓同桌判斷是否是一次函數;如果是,請說出其一次項系數與常數項。
七、板書設計(以課堂生成為準)。
八、課后反思:
在上一節課,學生整體感受了研究函數的一般思路與方法,但在具體知識理解的深度上還是不夠,尤其作業上學生對概念中的自變量的次數理解不夠到位。在這節課的學習中,應當促進學生從整體把握的高度深刻的理解一次函數與正比例函數的概念以及它們之間的關系。在概念的學習中,教師對學生提供的經驗性材料太少,僅從正面入手不足以使學生真正理解概念,還必須從側面和反面來理解概念,通過多舉例,多練習來鞏固概念。
教學中,需要分清并抓住本質現象,鼓勵學生用自己的語言闡述自己的看法,學生在經歷大量源自實際背景下的解析式的分析比較后,抽象概括出它們的一般結構,從而形成一次函數的概念,教師在強調概念需要注意和容易出錯的地方。在知識的獲取過程中,始終交織著舊知與新知、變與不變、相同與不同的對立與統一,這些都觸動著學生對數學學習的情感。
另外,課前備學生是十分必要的,只有充分了解學生,課時盡量關注每一個學生,做到心中有學生,使每一個學生都參與課堂活動中來,讓他們感受到自己是這節課的主角,從而學習數學的積極性提高,降低兩極分化。
一次函數的性質教學設計(匯總14篇)篇十二
(2)通過“做一做”引入例1,進一步發展學生數形結合的意識和能力。
(1)在探究二元一次方程和一次函數的對應關系中,在體會近似解與準確解中,培養學生勤于思考、精益求精的精神。
(2)在經歷同一數學知識可用不同的數學方法解決的過程中,培養學生的創新意識和變式能力。
(2)二元一次方程組和對應的兩條直線的關系。
數形結合和數學轉化的思想意識。
教具:多媒體課件、三角板。
學具:鉛筆、直尺、練習本、坐標紙。
第一環節:設置問題情境,啟發引導(5分鐘,學生回答問題回顧知識)。
內容:
1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數y=的圖像上嗎?
3.在一次函數y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數y=的圖像相同嗎?
由此得到本節課的第一個知識點:
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
第二環節自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。
內容:
1.解方程組。
2.上述方程移項變形轉化為兩個一次函數y=和y=2x,在同一直角坐標系內分別作出這兩個函數的圖像。
(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數表達式聯立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
第三環節典型例題(10分鐘,學生獨立解決)。
探究方程與函數的相互轉化。
內容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是。
第四環節反饋練習(10分鐘,學生解決全班交流)。
內容:
1.已知一次函數與的圖像的交點為,則。
2.已知一次函數與的圖像都經過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。
(a)4(b)5(c)6(d)7。
3.求兩條直線與和軸所圍成的三角形面積。
4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環節課堂小結(5分鐘,師生共同總結)。
內容:以“問題串”的形式,要求學生自主總結有關知識、方法:
1.二元一次方程和一次函數的。圖像的關系;
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
2.方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強調的是由于作圖的不準確性,由圖像法求得的解是近似解。
第六環節作業布置。
習題7.7a組(優等生)1、2、3b組(中等生)1、2c組1、2。
一次函數的性質教學設計(匯總14篇)篇十三
1、問題導入:
請同學們思考后回答:
(1)找出問題中的變量并用字母表示,列出函數關系式、
(2)這兩個函數關系式有什么共同點?自變量的取值范圍各有什么限制?
以上這些問題,請各小組討論一下,派代表回答、引出課題(板書課題)教師最后總結一次函數的概念、(板書)。
1、做一做:
我們已經學習了用描點法畫函數的圖象,請同學運用描點法畫出下列函數的圖象(老師用多媒體打出題目)。根據學生的動手實踐、觀察與討論,得出結論:一次函數的圖象是一條直線、特別地,正比例函數的圖象是經過原點的一條直線。
2、接下來教師提問:
(1)觀察所畫出的四個一次函數的圖象,比較各對一次函數的圖象有什么共同點,有什么不同點。
4、鞏固訓練:
(1)在同一平面直角坐標系中畫出下列函數的圖象。
將直線向上平移5個單位,得到直線_______________________、
(由學生到前板演)、
函數反映了客觀世界中量的變化規律,那么一次函數又有什么性質呢?
1、請同學們來一起觀察大屏幕上函數圖象(教師用多媒體演示函數的圖象),并回答:當一個點在直線上從左右移動時,它的位置如何變化?你能從中得到函數值的變化與自變量的變化規律嗎?(教師運用現代化的教學手段來演示點的移動情況,進一步促進了學生對一次函數的變化規律理解)由學生討論出結果:也就是說,函數值隨自變量的增大而增大、(教師板書)。
一次函數的性質教學設計(匯總14篇)篇十四
作為一位杰出的教職工,編寫教學設計是必不可少的,教學設計是把教學原理轉化為教學材料和教學活動的計劃。那么優秀的教學設計是什么樣的呢?以下是小編為大家收集的二元一次方程與一次函數教學設計,歡迎閱讀與收藏。
2、能根據一次函數的圖像求二元一次方程組的近似值。
1、用作圖像法求二元一次方程組的近似值。
1、做圖像時要標準、精確,近似值才接近。
先自學課本,用心思考自主學習部分,努力獨立完成,再與其他同學討論未明白的內容。課上展示,針對自己不明白問題多聽多問。
問題1、
(1)方程x+y=5的解有多少組?寫出其中的幾組解。
(3)在一次函數y=5—x的圖像上任取一點,它們的坐標適合方程x+y=5嗎?
(5)由以上的探究過程,你發現了什么?
問題2、
(3)由以上探究過程,我們發現解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發現可以利用解二元一次方程組的方法求兩條直線交點的坐標。
合作探究:
(1)用做圖像的方法解方程組。
(2)用解方程的方法求直線y=4—2x與直線y=2x—12交點。