在寫作過程中,參考范文范本可以激發我們的想象力和創造力,提供新的思路和觀點。以下是一系列經典的總結樣例,供您參考并應用到實際的寫作中。
數學竟賽建模論文(精選18篇)篇一
數學核心素養是數學課程的基本理念和總體目標的體現,可以有效地指導數學教學實踐。《普通高中數學課程標準(實驗)》修訂稿提出了數學學科的六種核心素養,即數學抽象、直觀想象、數學建模、邏輯推理、數學運算和數據分析。其中,數學建模是六大數學核心素養之一。提升數學核心素養,要求數學教師在課堂教學中強化學生的建模意識。教師在教學中通過設置數學建模活動,培養學生的建模能力。
數學建模是將實際問題中的因素進行簡化,抽象變成數學中的參數和變量,運用數學理論進行求解和驗證,并確定最終是否能夠用于解決問題的多次循環。數學建模能力包括轉化能力、數學知識應用能力、創造力和溝通與合作能力。
1.精心設計導學案,引導學生通過自主探究進行建模。
在新授課前,教師設計前置性學習導學案,為學生掃除知識性和方向性的障礙。通過導學案,引導學生去探究問題的關鍵,對模型的構建先有一個初步的自主學習過程。通過自主學習探究,讓學生充分暴露問題,提高模型教學的針對性。在前置性學習導學案設計的問題的啟發與引導下,學生會逐步學習、研究和應用數學模型,形成解決問題的新方法,強化建模意識和參與實踐的意識。例如,教師在引導學生構建關于測量類模型時,設計的導學案應提醒學生對測量物體進行抽象化理解,并掌握基本常識。教師應鼓勵學生采用多種不同的測量方式,分析并優化所得數據。通過引導學生自主探究,讓學生探索并歸納不同條件下的模型建立的方法,培養學生的建模維能力。
2.在教學環節中融入數學模型教學。
教師在教學的各個環節都可以融入數學模型教學。例如,教師在新課教學時,應注意滲透數學建模思想,讓學生將新授課中的數學知識點與實際生活相聯系,將實際生活中與數學相關的案例引入課堂教學,引導學生將案例內化為數學應用模型,以此激發學生對數學學習的興趣。在不同教學環節,教師通過聯系現實生活中熟悉的事例,將教材上的內容生動地展示給學生,從而強化學生運用數學模型解決實際問題的能力。
教師通過描述數學問題產生的背景,以問題背景為導向,開展新授課的學習。教師在復習課教學環節,注重提煉和總結解題模型,培養學生的轉換能力,讓學生多方位認識和運用數學模型。相對而言,高中階段的數學問題更加注重知識的綜合考查,對思維的靈活性要求較高。高中階段考查的數學知識、解題方法以及數學思想基本不變,設置的題目形式相對穩定。因此,教師應適當引導,合理啟發,對答題思路進行分析,逐步系統地構建重點題型的解題模型。
3.結合教學實驗,開展數學建模活動。
教師在開展數學建模活動時,應結合教學實驗。開展活動課和實踐課,可以促使學生進行合作學習。教師要適時進行數學實驗教學,可以每周布置一個教學實驗課例,讓學生主動地從數學建模的角度解決問題。在教學實驗中,以小組合作的形式,讓學生寫出實驗報告。教師讓學生在課堂上進行小組交流,并對各組的交流進行總結。教學實驗可以促使學生在探索中增強數學建模意識,提升數學核心素養。
4.在數學建模教學中,注重相關學科的聯系。
教師在數學建模教學中,應注重選用數學與化學、物理、生物等科目相結合的跨學科問題進行教學。教師可以從這些科目中選擇相關的應用題,引導學生通過數學建模,應用數學工具,解決其他學科的難題。例如,有些學生以為學好生物是與數學沒有關系的,因為高中生物學科是以描述性的語言為主的。這些學生缺乏理科思維,尚未樹立理科意識。例如,學生可以用數學上的概率的相加和相乘原理來解決生物上的一些遺傳病概率的計算問題,也可以用數學上的排列與組合分析生物上的減數分裂過程和配子的基因組成問題。又如,在學習正弦函數時,教師可以引導學生運用模型函數,寫出在物理學科中學到的交流圖像的數學表達式。這就需要教師在課堂教學中引導學生進行數學建模。因此,教師在數學建模教學中,應注意與其他學科的聯系。通過數學建模,幫助學生理解其他學科知識,強化學生的學習能力。注重數學與其他學科的聯系,是培養學生建模意識的重要途徑。
總之,教師在數學教學過程中,應以學生為本,精心設計導學案,鼓勵學生自主探究和應用數學模型。通過建模教學,讓學生形成數學問題和實際問題相互轉化的數學應用意識和建模意識。教師通過強化數學建模意識,讓學生掌握數學模型應用的方法,可以使學生奠定堅實的數學基礎,提升數學核心素養。
參考文獻:
[1]鄭蘭,肖文平.基于問題驅動的數學建模教學理念的探索與時間[j].武漢船舶職業技術學院學報,20xx(4).
[2]王國君.高中數學建模教學[j].教育科學(引文版),20xx(8).
[3]李明振,齊建華.中學數學教師數學建模能力的培養[j].河南教育學院學報(自然科學版),20xx(2).
數學竟賽建模論文(精選18篇)篇二
大學數學包含微積分、線性代數、概率論與數理統計三門基礎課程,這是高校經管類專業必修課程;更高級的數學課程還有運籌學、最優化理論,這些在中高級西方經濟學中會經常用到。現實經濟中存在很多問題都與數學緊密相關,都需要嚴謹的數學方法去解決,因此數學的學習是非常重要的。數學的學習,一方面能夠培養學生的邏輯思維能力和空間想象能力,另一方面,數學的系統學習為經管專業后續課程(如西方經濟學、計量經濟學)提供了數學分析工具和計算方法。除了需要掌握數學分析和計算能力,經管專業應該更加注重培養學生的經濟直覺和數學建模能力,讓學生形象地理解數學定義和經濟現象。雖然現在高校中經管類專業的數學教育過程融合了一些本專業的知識,但仍存在很多問題。筆者根據自己以及同行的教學經驗,提出相應的改革措施以更好挖掘數學方法在經管中的有效作用。
一、經管類專業大學數學的特點。
每個專業都有其獨特的學習內容和方法。經管專業作為我國培養經濟工作人員的特殊專業而成為國家重視、社會關注的專業。大學數學是社會科學和自然科學的基礎,因此其在經濟學理論中有著舉足輕重的地位,數學可以為經濟學中的很多問題提供思想和方法的支持。經管類專業數學的學習有如下特點。
1.經管專業的數學和經濟學問題緊密相關。
經管專業要學習和解決經濟相關內容,因此,經濟類的數學教育要圍繞著經濟問題展開討論,例如簡單的經濟問題有價格函數、需求函數、供給函數以及邊際成本的分析,復雜一些的還有競爭性市場分析、壟斷競爭和寡頭壟斷、博弈論和競爭策略、生產和交換的帕累托最優條件、信息不對稱的市場,這些都需要用微積分的知識理解。把數學知識融入經濟學,能夠給解決經濟學問題提供有效的技術支持。例如通過畫出各種函數的圖像,可以讓學生更直觀地了解價格、需求、供給的關系,可以更形象地看出它們之間的依賴關系。微積分中導數的學習應用到經濟中為經濟利益最大化提供了分析方法,例如需求理論可以轉化成一個約束最優化問題,用拉格朗日乘數法進行求導計算,從而求出目標函數的最優值。另外,消費者剩余可以轉化成定積分進行計算,人口阻滯增長模型可以用微分方程解釋。
2.經管專業的數學學習注重經濟直覺培養。
數學的學習可以訓練和培養學生的邏輯思維能力,一般自然科學專業的數學學習注重于各種問題的來源以及證明。然而經管專業的數學主要為學生培養經濟直覺并引導其進行有效計算,因此需要著重培養經管專業學生的數學計算能力。例如,在講最值問題時可以讓學生計算利潤最大化的例子,利用微積分的知識計算出最大利潤,這樣既培養了學生的數學計算能力,又讓學生理解了經濟學概念。
二、經管類專業學習數學的過程中出現的問題。
近年來,大學數學教育改革取得了一定效果,但是還存在很多問題。例如,有些學校不重視大學數學課程的學習,只注重專業課的學習。實際上數學學習的效果直接影響后續專業課的學習。還有部分院校教師教授經管課程時還停留在純粹的數學理論上,雖然有的高校在高等數學教育中很大程度上融入了經濟中的各類問題,但是由于高校教師都是數學專業出身,對經濟類專業中的數學問題不甚了解,因此不能很好地解釋相應的經濟現象。另外,經管類招生一般同時招收了文科和理科生,從而學生的數學基礎大相徑庭,使得大學數學的教學存在一定困難。還有大學的學習任務重而老師授課時間有限,對于基礎較差的學生,教師又不能非常詳細地復習學生高中學過的知識,因而造成基礎好的學生學起來輕松自如,學習效果較好,而基礎差的學生學起來吃力,學習的效果也不盡如人意。
三、改革措施。
培養學生經濟直覺和數學建模能力。
1.優化教學內容,根據專業特點選取相關實例來理解數學定義。
由于大學課程任務重,使得大學數學的學習課時相對變少,這就要求教師上課時要優化教學內容,適當刪減純數學理論的學習,在不影響后續課程的條件下,可以刪除一些難度較大的純理論性的內容,擴充一些和經管專業知識相關的內容。教師在上課時,要根據學生所學專業的特點,選取相關概念、相關實例,讓學生更直觀、更形象地學習數學知識,從而培養學生的經濟直覺。例如,在學習微積分中導數的相關概念時,可選取有關成本函數、收入函數和利潤函數的例題來求邊際成本、邊際收入和邊際利潤,從而讓學生了解導數在本專業中的應用。在講線性代數的矩陣概念時,可以給學生講解經濟學中投入產出模型。在講股票投資的時候可以和概率論聯系在一起,通過概率論的理論解釋可以說明股票投資是具有隨機性的,在股票市場沒有絕對的贏家。在講拉格朗日方法的時候可以引入影子價格的概念,從而理解影子價格的經濟現象解釋。只有讓數學和學生所學專業掛鉤,才能讓學生輕松地學習數學定義,并了解一些經濟學專業名詞,達到讓數學更好的為專業知識服務的目的。
2.教學過程中要注重學生數學建模思想的培養。
經管類專業學生學習數學課程,一方面是為了解決專業內容中的問題,另一方面是還需要培養學生的邏輯思維能力和分析問題、解決問題的能力。因此,在講授經濟中的數學問題時,還要教會學生根據經濟問題建立相應的數學模型。建模就是把經濟學中一些現象或者問題用數學語言表述出來,然后進行模型求解,從而解釋經濟現象或者解決相應的經濟問題。通過建立數學模型把經管專業中的經濟學問題轉化成數學問題,然后通過求解數學模型得出相應答案,從而解決該經濟問題。因此,建立數學模型非常重要。例如求解最大利潤問題、最小成本問題可以引導學生通過建立利潤和成本函數,從而轉化成一個最優化問題,并且在求解該問題時,需要用到導數(偏導數)的知識,這樣既加深了學生對數學知識的理解,又體會到數學知識在經濟學中的重要作用。在學習統計學的f檢驗和t檢驗時,可以引導學生建立計量經濟學中要學習的回歸模型,一開始可以引入一元線性回歸模型,再過渡到二元線性回歸模型,對于二元線性回歸模型可以形象地借助二維圖像進行說明,最后分析多元線性回歸模型,特別地,還可以指出,在回歸模型的建立中本質上用到了微積分中學習的最小二乘法。在線性回歸模型學習完以后,還要進一步學習更加復雜的非線性模型,以便讓學生掌握由簡單到復雜的數學建模過程。總之,在整個數學的學習過程中,要經常讓學習練習如何正確地建立模型,以提高學生分析問題和解決問題的能力。
3.教師要不斷了解經管專業知識,以適應學生學習的需要。
教授經管類專業的任課教師要不斷閱讀經管類專業相關書籍,充分了解經管類專業知識要用到的數學知識和數學思想,把經濟學和數學融會貫通。只有這樣,教師在上課時才能做到有的放矢,才能時刻圍繞學生所學所需的專業知識來講授數學知識,真正做到數學為專業服務。整個教學過程中,教師要對經管類專業知識有深入的理解,才能結合數學給學生解釋清楚經濟學概念和經濟學原理,才不至于讓所學內容與專業知識脫軌。教師要了解經濟學的前沿進展,從而可以在上課過程中引入生動而形象的經濟實例,做到學教結合,真正成為學生學習的引路人。
4.教學方法要多元化,以提高學生學習興趣。
目前,經濟數學的教學依然是傳統的教學模式,即教師講授、學生被動接受的模式。這種教學方法嚴重挫傷了學生學習的積極性和主動性。因此,教學方法的選擇至關重要。這就要求教師要根據學生的特點,做到因材施教。講課過程中也不能一味羅列一些數學定義和數學定理,而要注重與學生的互動,以提高學生學習的積極性。教師在上課過程中還要注重學生興趣的培養,可以講一些獲得諾貝爾獎的經濟學家的事跡,很多獲得諾貝爾獎的經濟學家都有很好的數學基礎,在這些基礎上他們進一步在學習的過程中加強了自己的經濟直覺培養,最后取得學術的成功。通過經濟學家的故事可以啟發引導學生去接觸最新的經濟學理念,從而逐步探索新知識,然后啟發學生學習數學和經濟學的興趣。同時要讓學生多獨立思考,布置一些有趣的課后習題,特別是可布置一些結合生活中的經濟實例的數學習題,通過解答這些習題,學生不但可以學習數學知識,還可以讓學生體會數學和經濟學的生動結合,最后引導學生思考一些更加復雜的經濟問題并用數學知識解決問題。只有老師生動講解、引導和學生快樂、輕松學習的完美結合,才能激發學生的學習興趣,起到事半功倍的學習效果。
四、結語。
在高校數學教學中,應根據經管專業特點采取有效的教學方法教授數學知識,特別要注意學生經濟直覺的培養,這就要求在教學過程中可以適當減少數學的嚴格證明,注重數學概念在經濟學中的應用,從而讓學生形象生動的理解數學知識在經濟學中的重要作用。另外,教學過程中還需要培養學生的數學建模能力,并培養學生學習數學的興趣,引導學生將所學數學知識應用到實際工作中,真正做到學有所用,從而培養優秀的經濟類人才。
數學竟賽建模論文(精選18篇)篇三
【論文關鍵詞】空氣管理系統;信號驅動;控制邏輯建模。
0引言。
空氣管理系統是民用飛機上非常重要的機載系統之一,負責控制飛機引氣、座艙壓力調節、機翼防冰、溫度控制等功能[1-5]。空氣管理系統控制是以兩個綜合空氣管理系統控制器(iasc)為控制中樞,以各種傳感器發來的監控信號、外部系統發來的通訊信號為輸入,經iasc內部邏輯運算后,驅動各種受控設備,如風扇、活門、加熱器等,來實現飛機空氣溫度、壓力、流量等控制功能,并將系統狀態信息發送給外部系統實現顯示、告警及記錄功能。
空氣管理系統控制功能需求是以系統需求為依據,結合所采用的控制架構細化而來。各控制功能由若干個控制邏輯組成。在空氣管理系統研制過程中需要進行控制功能的確認與驗證。仿真的方式能有效提高效率,降低成本,而建立各種控制邏輯模型則是進行仿真確認與驗證的基礎。本文研究了一種信號驅動的空氣管理系統控制邏輯建模方法。
1信號驅動的控制邏輯建模方法。
信號驅動是指由各種信號作為基本單元來進行控制邏輯建模。各個信號表示著不同的狀態變量,空氣管理系統控制器根據不同的輸入狀態變量的值來決定發出的指令信號。通過基本信號來表述邏輯能從最底層關系開始,逐步向上搭建整套控制邏輯。具體的建模過程包括構建信號庫、搭建邏輯樹以及驅動功能驗證邏輯3個步驟。
1.1構建信號庫。
構建信號庫是為了方便在構建邏輯時隨時調用而將一些基本的輸入信號信息收集并按照一定的編碼方式存儲起來。空氣管理系統邏輯運算中需要用到的信號屬性包括信號名稱、信號功能范圍、信號有效性、信號設備源。所以可將每條信號按照[id|name,range(min,max),valid,source]的方式進行整理,例如由控制器iasc1的a通道發出的座艙高度告警信號可表示為[00001|cab_alt_w,(0,1),true,iasc1a]。集合所有控制器接收的信號,從而形成空氣管理系統信號庫。
1.2搭建邏輯樹。
邏輯樹的根節點一般是各個基本信號組成的關系式,例如cab_alt_w=1,表示座艙告警為真。這些關系式通過基本的與/或邏輯算子連接,從而形成基本的邏輯樹,這些邏輯樹的輸出結果為ture或者false。在搭建邏輯樹的過程中,當一條邏輯鏈比較長時,可將一棵邏輯樹的輸出作為另外一棵邏輯樹的輸入而形成邏輯嵌套,建模論文這種方式能簡化邏輯樹的搭建過程。邏輯樹的表達可用邏輯方程來記錄。例如座艙高度告警邏輯可按以下兩種方式表達。
將所有的邏輯按照邏輯樹的方式搭建起來,可形成一個邏輯庫,在后續定義功能時即可直接調用來構建功能。
1.3驅動功能驗證邏輯。
若干條邏輯合在一起,可以驅動復雜的功能。通過功能的仿真即可驗證各種邏輯的正確性。從功能層面進行驗證因為意義更明確更方便實施,且一條功能的驗證即可驗證多條邏輯,功能驗證的方式是選擇功能相關的所有信號,設定各信號的狀態值,作為組成功能的所有邏輯的輸入,計算得到功能輸出值,觀察是否與預期一致。
2空氣管理系統cas與簡圖頁邏輯建模與驗證。
cas與簡圖頁是供飛行員了解各系統狀態的重要頁面,由系統負責提供信號,指示系統按照指定的cas與簡圖頁邏輯進行顯示。基于本文的思想,進行空氣管理系統cas與簡圖頁邏輯建模與功能驗證,開發了相應的軟件平臺。
2.1空氣管理系統cas邏輯建模。
定義cas主要需要定義cas等級、cas顯示內容以及cas顯示邏輯。cas等級按照嚴重程度可分為waring,caution,advisory,status四種,分別用紅色、黃色、青色、白色來表示。本文定義的cas邏輯是由系統發出cas相關信號后,由這些信號運算后顯示在cas頁面的邏輯,空氣管理系統cas消息主要顯示系統工作狀態以及在一些危險狀態如座艙高度過高、機翼防冰失效等情況下告警。
cas定義模塊主要提供cas名稱、內容、等級的編輯頁面,cas邏輯的指定可直接調用邏輯庫中的邏輯。
2.2空氣管理系統簡圖頁邏輯建模。
空氣管理系統簡圖頁功能是通過簡要示意圖顯示系統主要設備與管路內空氣的狀態,管路的空氣狀態信息需要根據上下游的設備狀態來判斷,這些判斷關系組成了簡圖頁的邏輯。空氣管理系統簡圖頁的主要圖形元素是活門與管路流線,其邏輯定義可分為活門與流線顯示邏輯定義。簡圖頁定義模塊設計了自定義活門與管路繪制工具,通過活門與流線顯示邏輯定義指定顯示顏色的驅動邏輯,構成整體的簡圖頁顯示邏輯。
2.3空氣管理系統cas與簡圖頁功能驗證。
前面構建了空氣管理系統cas與簡圖頁的邏輯,通過指定各功能相關輸入信號的值,在邏輯運算后再直觀地顯示在頁面上,從而可以確認功能是否正確實現。在驗證時只需根據場景需要,設定各信號的模擬值,由系統后臺運算得到功能輸出信號值,并驅動頁面上的顯示元素顯示相應的狀態。
通過上述幾個步驟,能對空氣管理系統cas與簡圖頁功能進行整體的驗證,有效提高了cas與簡圖頁功能的設計與確認效率,也能為后續系統排故提供支持。
3結論。
本文結合空氣管理系統控制架構特點,提出了信號驅動的邏輯建模方法。本文方法具有如下特點:
1)構建了空氣管理系統基礎信號庫,能支持在邏輯層、功能層隨時調用相關的信號信息;。
2)構建了空氣管理系統邏輯庫,支持上層功能的搭建與驗證;。
3)開發了控制邏輯建模工具,能模擬各種場景下的功能驗證,提高了設計效率。
【參考文獻】。
[1]程立嘉,程曉忠,左彥聲.大型客機空氣管理系統現狀與發展趨勢[j].航空科學技術,20xx.3:7-8.
[2]徐紅專,崔文君,張惠娟.電子電動式座艙壓力調節系統研究[j].江蘇航空,20xx,3:8-13.
數學竟賽建模論文(精選18篇)篇四
計算數學建模是用數學的思考方式,采用數學的方法和語言,通過簡化,抽象的方式來解決實際問題的一種數學手段。數學建模所解決的問題不止現實的,還包括對未來的一種預見。數學建模可以說和我們的生活息息相關,尤其是如今科技發達的今天。數學建模應用領域超乎我們的想象,甚至達到無所不及的程度,隨著數學建模在大學教學中的廣泛使用,使數學建模不止成為一種學科,更重要的是指導新生代更好的利用現代科學技術,成為高科技人才,把我國人才強國,科教興國的戰略推向一個新的高度。
1.1數學建模引進大學數學教學的必要。教學過程,是教師根據社會發展要求和當代學生身心發展的特點,借助教學條件,指導學生通過認識教學內容從而認識客觀世界,并在此基礎之上發展自身的過程,即教學活動的展開過程。以往高工專的數學教學存在著知識單一,內容陳舊,脫離實際等缺陷,已經不能滿足時代的發展,如今的數學教學過程不是單純的傳授數學學科知識,而是通過數學教學過程引導學生認識科學,理解科學,從而指導實踐,促進學生的德智體美勞全面的進步和發展。因此數學建模成為一門學科,被各大高等院校廣泛引用和推廣,其實數學建模不止應用在大學數學教學中,其他一切教學過程多可引進數學建模。1.2數學建模在大學數學教學中的運用。大學數學教師通過這個數學建模過程來引導學生解決問題和指導實踐的能力。再次建模結果對現實生活的指導,這是大學數學教學中數學建模所需要達到的效果和要求。不再停留在理論學習,而是通過理論指導實踐,從而為科學的進步和人才綜合水平的提高提供可能。
2.數學建模對當代大學生的作用。
2.1數學建模對數學學科和其他學科學生的巨大影響力學習數學建模,能夠使一個單獨的數學家變成經濟學家,物理學家還有金融學家,甚至是藝術家,只要正握數學建模就能指導學生通過掌握數學建模的思維和方法向其他領域學習和進步。數學建模成為連接數學和其他領域的紐帶,是當今數學科學在其他領導應用的橋梁,是數學技術轉化為其他技術的途徑,數學建模在學生中越來越受到關注和歡迎,越來越多的學生開始學習數學建模,尤其是數學界和工程界的學生,這成為當今學生成為現代科技工作者必須掌握的只是能力之一。
2.2數學建模對學生綜合能力的提高數學建模是大學數學教師運用數學科學去分析和解決實際問題,在數學建模學習的過程中,大學生的數學能力得到提高,其分析問題、解決問題的能力得到提高,這對大學生畢業走向社會具有著重大意義。通過數學建模的學習和應用,激發大學生學習數學和應用數學的能力,運用數學的思維和方法,利用現代計算機科學,來解決數學及其他領域的問題。
3.數學建模對大學數學及其他學科教師的作用。
數學建模引入大學數學教學,這是時代的進步,是時代對當代大學教師提出的新要求,尤其是大學數學教師,其不再停留在以往的單純的數學知識講授方向,而是將數學科學作為基礎,引導當代大學生發散思維,發揮主觀能動性,從而學習數學科學,并運用數學科學解決現實問題。在這個過程中大學教師的專業知識得到提高,其創新精神也得到了極大的豐富。大學數學教師不止完成數學教學,更重要的是培養了高科技的人才,這對大學數學教師的社會地位也有了相應的改變,在尊重人才,尊重科學的氛圍中,大學數學教師及其他學科的教師得到了鼓舞,得到了進步,得到了認可。數學建模越來越重要,關于數學建模的各種國內國際大賽頻頻舉辦,這對大學數學教師在知識,體力和創新性上都提出新的要求,為了更好的參與數學建模比賽,大學數學教師投入更多的時間和經歷在學生教育和數學建模中,他們成為真正的臺前和幕后的指揮者。
隨著現代大學學科的豐富,尤其是計算機科學的廣泛應用,大學數學教學的跨時代發展,數學建模成為各個高校數學教學的重點內容,數學建模教學吸納數學家,計算機學家等多個學科專家的意見,從而為培養出綜合行的高科技人才做好充分的準備。可以說數學建模教學是當今大學數學教學的主旋律,是數學科學和其他科學進步發展的方向和原動力。
參考文獻:
[1]李進華.教育教學改革與教育創新探索.安徽:安徽大學出版社,20xx.8.
[2]于駿.現代數學思想方法.山東:石油大學出版社,.
數學竟賽建模論文(精選18篇)篇五
概率論與數理統計是一門研究隨機現象及其統計規律的數學學科,它是高等院校各專業開設的重要的基礎數學課程之一。以下是“概率統計中融入數學建模思想的教學探索論文”,希望能夠幫助的到您!
如何運用該課程的理論知識解決實際問題具有非常重要的研究意義。每年一次的全國大學生數學建模競賽是目前各高校的規模較大的課外科技活動之一。數學建模是一門運用數學工具和計算機技術,通過建立數學模型來解決現實中各種實際問題的新學科。它通過調查,收集數據、資料,觀察和研究其固有的內在規律,提出假設,經過抽象簡化,建立反映實際問題的數學模型,即將現實問題轉化為數學問題。縱觀歷年數學建模競賽試題,像高等教育的學費問題、北京奧運會人流分布、dna序列分類問題、dvd在線租賃問題及醫院病床的合理安排等問題都不同程度地涉及到了概率論與數理統計的相關知識。筆者多年來一直為理工科的本科生講授概率論與數理統計課程,并每年輔導和指導全國大學生數學建模競賽,所以與同事們一直都在探索如何深化概率論與數理統計這門課程的教學改革,使其與數學建模思想能有機結合。本文將從以下幾方面進行探討研究。
一、概率統計教學中融入數學建模思想的重要性。
傳統的概率論與數理統計課程的教學,可以簡單地歸納為:數學知識+例子說明+解題+考試。這種模式雖然使學生在一定程度上掌握了基礎知識,提高了計算能力,也學會了運用所學知識解決課后作業和應付考試。但也不難看出,這種教學方式與實際嚴重脫節,學生學會了書本知識,但卻不知在所學專業中該如何運用,這不僅與素質教育的宗旨相違背,也極大地削弱了學生學習這門課程的能動性,從而也影響了教學效果。數學建模的指導思想恰恰在于培養學生運用所學理論知識來解決現實實際問題。這不僅僅是這門課程對學生的教育問題,更是順應當前素質教育和教學改革的需要問題。
二、在課堂教學中融入數學建模思想。
對于講授概率論與數理統計這門課程的教師來說,有著非常重要的任務,那就是如何教好這門課程,即如何使學生通過對這門課程的學習而增強其對概率統計方法的理解與實際應用能力。
1.教學內容上數學建模思想的滲透。眾所周知,教師對教學內容的把握起著不容忽視的作用。有效的教學是依賴于教師對該課程的內容有著全面的和深刻的理解。概率統計中的一些概念、性質、模型的應用確實有些難度,在日常教學中可以通過精選例題、切近現實生活,使學生逐漸深化對相關知識的理解,即講課的內容生活化、趣味化,生活中的概率統計問題模型化。在概率統計里這些趣味性的例子比比皆是!比如摸球、投擲骰子等常見的游戲,“父母的身高對子女的影響”、“男女生人數的均衡對一個班級學習效果的影響”等發生在身邊的事。在概率統計這門課程中數學模型的影子也隨處可見!比如像降雨概率、人體舒適度指數、超市銀臺處的等待服務時間等這樣的隨機現象問題都需要將實際問題數量化,然后對研究對象做出判斷,從而解決問題。教學內容中也可插入一些反映社會經濟生活的背景與熱點問題,使課堂教育跟上時代步伐。如有獎促銷問題、保險賠償金確定問題、交通事故問題等,這樣的內容都旨在培養學生利用數學工具分析解決實際問題的意識和能力,也就是培養學生的建模能力。
2.教學方法中融入數學建模思想。在教學中,教師的責任更大地體現在對學生的引導能力,通過引導使學生運用自己的能力來解決相關的問題。這樣使學生不但能夠學到嚴謹的理論知識,同時也提高了學生分析問題和解決問題的能力。在教學中,我們主要采用精講與導學相結合的方法,同時在課堂教學的各個環節中也可恰當運用討論式、啟發式、歸納類比式等教學方法。在運用各種教學方法中都要充分關注學生的參與性,在與學生的互動中挖掘出課本內容中的數學建模思想,使其“顯化”出來。比如在講解隨機事件和古典概型中,可以講解摸球問題、生日巧合及配對問題、確診率及血清化驗問題等,這樣既活躍了課堂氛圍,又培養了學生愛思考的習慣。必須提及的是“案例教學法”,它是概率統計課程融入數學建模思想的有效而常用的教學方法之一。在教學中可以直接給出案例,然后從求解具體問題中找出相應的理論和方法。此方法縮短了數學理論與實際應用的距離,不僅可以提高學生學習的積極性,同時也使學生明白概率統計是建立在現實生活基礎上的一門課程。比如在隨機變量的數字特征中,可以給出“報童的收益問題”案例;在參數估計中,可以給出“湖中魚的數量估計”案例;在大數定律和中心極限定理中,可以給出“保險公司的收益問題”案例;等等。由于受到課時限制,可能不能充分有效地對案例進行完整講解,通常將“案例分析法”和“現代教育技術法”相結合進行教學,利用多媒體教學手段可以將案例中出現的大量統計計算均由統計軟件(如spss,sas,r等)來實現。這樣既易于被學生接受,也有助于學生掌握統計方法和實際操作能力。
三、發揮課后作業作為課堂教學的補充與延伸作用。
作為數學課程,課后作業是十分重要的組成部分,是進一步理解、消化和鞏固課堂教學內容的重要環節。
1.課后試驗。在概率統計這門課程中有很多隨機試驗,并且很多統計規律也都是在隨機試驗中獲得的。比如通過投擲均勻的硬幣和均勻的六面體骰子,可以很好地理解頻率與概率之間的關系;雙色球的有(無)放回抽樣,有助于理解隨機事件的相互獨立性;統計某書上的錯別字,并判斷是否服從泊松分布等。通過讓學生們親自做實驗,不僅使他們能夠探索隨機現象的統計規律性,還能幫助他們更深刻的理解、鞏固和深化理論。
2.課后作業。除常規概率統計練習題目外,可以增加一些有趣的、與日常生活中密切相關的概率統計題目。比如在給出了摸彩票規則和中獎規則后,解決下面三個問題:
(1)中獎概率與摸彩票的次序有關系嗎?
(2)假設發行了100萬張彩票,中一、二等獎的概率是多少?
(3)若你打算摸彩票,在什么條件下中獎概率會大一些?
3.課外實踐。針對概率統計實用性強的特點,有目的地組織學生參加社會實踐活動,深入實際,調查研究,收集數學建模的素材。只有將某種思想方法應用到實踐中去,實際解決幾個問題,才能達到理解、深化、鞏固和提高的效果。教師可以從現實中尋找素材,選擇具有豐富現實背景的學習材料,可以讓學生自由組隊,深入實際,運用統計方法調查、觀察和收集一些數據,在教師指導下運用所學知識和計算機技術,分析解決一些實際問題,寫出書面報告。比如利用閑暇時間觀察校門口某路公交車各時段乘車人數,根據觀察數據,為該線路設計一個便于操作的公交車調度方案:包括發車時刻表;共需多少輛車;以怎樣的程度能夠照顧乘客和公交公司雙方的利益。
四、改變傳統單一的考核方式。
考核是教學過程中不可缺少的一個教學環節,是檢驗學生學習情況,評估教師教學質量的手段。傳統的概率論與數理統計課程均采用期末閉卷考試,教師通常都會按照固定的內容和格式出題,學生為了應付考試,往往把過多的精力花費在對公式和概念的死記硬背上,而忽略了所學知識在實際中的應用。雖然綜合成績是由平時成績和期末成績的各占比例計算而成,但平時成績的考核主要看課后習題所做的作業,而學生的學習積極性對作業的態度差異性是很大的。為此,有必要改革傳統單一的考核方式,培養學生綜合運用知識的能力。考核結果包括兩部分:一部分是閉卷考試,占60%,主要考察學生對概率統計的基本知識、基本運算和基本理論的掌握程度;另一部分是開放性考核,由各占20%的平時成績和課后試驗、課外實踐構成,其中平時成績主要考查學生的作業情況、考勤情況、課堂表現情況等方面;課后試驗、課外實踐主要考核學生對概率統計知識的應用能力,可以給學生一些實際問題,或者讓學生參加社會實踐調查收集數據,學生可以自由組隊也可單獨完成,通過運用概率統計知識建立數學模型并借助計算機處理大量數據對實際問題得到解決,最后提交一份書面研究報告。如此靈活多變的考核機制,才能充分調動學生學習的積極性和主動性,才有利于學生應用能力的培養。
通過在各個環節中融入數學建模思想,不但充分體現了概率統計的實用價值,搭建起概率統計知識與實際應用的橋梁,而且也使得工科類學生對概率統計這門課程的理解、認識增強了,數學的應用能力也得到了提高。
數學竟賽建模論文(精選18篇)篇六
摘要:所謂數學建模,即借助數學模型,處理所遇到的具體問題的課程,在本文中,分別就教學、模型建立以及相應的信息檢索來進行研究,通過將這三面進行相應的糅合從而證明可以將計算機技術引入到相應的建模實踐中,從而有效促進數學建模的發展,使得教學質量得以有效提升。
關鍵詞:數學建模;計算機應用;融合。
目前計算機在生活中應用極為廣泛,借助于計算機能夠使得先前較為復雜繁瑣的問題得以簡化,有效提升計算速率。就數學建模來看,計算機在此方面的作用不言而喻。對于此,人們普遍認為,能夠借助于計算機將任何一個數學問題進行簡化處理。而對于生活中所遇到的任意一個實際問題,均能夠借助于相應的數學模型來進行表示,在建模過程中,也可以根據實際情況來做出一些相應的簡化處理,從而將其歸屬于完全的數學問題,最終建立起能夠用變量所描述的數學模型。之后,借助于相應的計算機、軟件以及編程方面的知識,來對此模型進行相應的求解計算。
2.計算機技術在數學建模中的應用。
計算機在數學建模中的應用面非常的廣泛,限于筆者的水平,本文主要就兩個方面展開討論:第一,確定建模思想;第二,對數學模型進行求解計算。
2.1計算機技術輔助確立數學建模思想。
對于數學建模,其最為重要的目的便是為了能夠提升學生對于數學知識的使用性,借助于相關的數學思想來對實際問題進行解決,同時,還能夠促進學生數學思想的發展、建模能力發展以及相關數學知識的完善,最終提升其對于數學知識的使用能力。培養數學思維重在將學生所思所想以最快最佳的方式展示出來,計算機技術在數學建模中的應用使得這個設想變得可能。因為數學模型的計算和設計工作量大,傳統的計算辦法不能迅速解決某個問題,但是在建模的輔助下一切問題迎刃而解。
2.2計算機技術促進數學建模結果求解。
對于數學建模,其屬于一項系統性工程,整個過程工作量較多。在前期,對于模型的構想與建立需要不斷完善,此后,對于模型的求解也是極為困難的,這主要因為其涉及到非常多的數據處理與計算。在計算數學模型時,不僅速度快,準確度也很高,如表1給出了手動解30維線性方程組和計算機解30維方程組的時間,手動所用時間是計算所用時間的1200倍。
同時,對于一些借助紙和筆而無法實現的計算,通過計算機能夠較快實現,其中主要涉及到相關的編程、繪圖等操作。
計算機在數學建模領域擁有極為重要的優勢與作用。如計算機的計算速度快、可以輔助作圖,甚至可以輔助做立體圖形。同時,借助于計算機也能夠使得模型得以進一步完善,也就是說兩者彼此之間相輔相成。
數學建模的出現,主要是為了便于處理同工程或者科研相關的問題的,和試題類有著較大區別。其所處理問題具有一定的特性,即圍繞日常具體問題展開,科研背景突出,需要的知識結構復雜,涉及的范圍龐大,因素多且難,非常規特征明顯,缺乏有效的處理措施,涉及數據多,要選擇的算法亦十分繁瑣,得出的結果存在波動性,要有限定的前提,通常僅可獲取近似解。而計算機的出現,則在一定程度上使這種情況得到緩解。是數學建模多樣化,令設計領域更加寬泛,如數學建模可以模范人類大腦的記憶功能。
3.2計算機使數學模型求解更為簡單。
計算機在數學建模中的應用使得數學模型求解更為簡單體現在以下幾個方面:
(1)計算量問題得到解決。以前計算量大是制約數學建模發展的主要因素之一,現在在計算機的幫助下,只要模型完善,計算量大已經不是問題。如德國的神威計算機,計算速度達到了12.5億億次/秒。
(2)可視化功能使抽象問題具體化。現代計算機都有強大的作圖功能,會使數學模型中的一些抽象概念、問題解決過程都變得可視化。圖表的制作更是非常簡單。
3.3計算機利用數學建模尋求最優解成為可能。
在3.1節中已經提到,在計算機沒有應用到數學建模中之前,很多數學模型的解只是近似解,連精確解都談不上,更不用說是最優解。其主要原因是模型本身的計算量太大,筆和紙這兩樣工具更不能在短時間內攻下數學模型計算這塊,此外筆和紙根本不可能完成某些圖表的制作也是原因之一。計算機有效的解決了這兩個問題,這就會使得數學模型得到精確解。在求得精確解的基礎之上還可以進一步尋求最優解,因為數學模型的解往往是多解的,不是唯一解。
4.總結。
數學模型,其主要是通過使用相應的數學語言來對實際問題進行相應的表示,也就是說,模型的實質主要是為了有效解決生活中的實際問題。通過借助于計算機能夠使得復雜問題得以有效簡化,對于促進社會發展起到了重要作用。因而,在未來發展中數學建模也將會像計算機一樣得到廣泛重視。目前,對于教育界而言,其主要問題在于理論與實踐相脫節。我們的教學越來越形式、抽象。在教材中,充斥著大量的定理、理論證明等等,但是并沒有將其與實際生活相結合,而對于借助相應的數學教學來實現腦力發展的系統化更是微乎其微。將計算機與數學建模相結合,這是未來數學領域發展所必須經歷的一個過程。
參考文獻:
數學竟賽建模論文(精選18篇)篇七
數學建模隨著人類的進步,科技的發展和社會的日趨數字化,應用領域越來越廣泛,人們身邊的數學內容越來越豐富。強調數學應用及培養應用數學意識對推動素質教育的實施意義十分巨大。數學建模在數學教育中的地位被提到了新的高度,通過數學建模解數學應用題,提高學生的綜合素質。本文將結合數學應用題的特點,把怎樣利用數學建模解好數學應用問題進行剖析,希望得到同仁的幫助和指正。
一、數學應用題的特點。
我們常把來源于客觀世界的實際,具有實際意義或實際背景,要通過數學建模的方法將問題轉化為數學形式表示,從而獲得解決的.一類數學問題叫做數學應用題。數學應用題具有如下特點:
第一、數學應用題的本身具有實際意義或實際背景。這里的實際是指生產實際、社會實際、生活實際等現實世界的各個方面的實際。如與課本知識密切聯系的源于實際生活的應用題;與模向學科知識網絡交匯點有聯系的應用題;與現代科技發展、社會市場經濟、環境保護、實事政治等有關的應用題等。
第二、數學應用題的求解需要采用數學建模的方法,使所求問題數學化,即將問題轉化成數學形式來表示后再求解。
第三、數學應用題涉及的知識點多。是對綜合運用數學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關,很難將問題正確解答。
第一層次:直接建模。
根據題設條件,套用現成的數學公式、定理等數學模型,注解圖為:
第二層次:直接建模。可利用現成的數學模型,但必須概括這個數學模型,對應用題進行分析,然后確定解題所需要的具體數學模型或數學模型中所需數學量需進一步求出,然后才能使用現有數學模型。
第三層次:多重建模。對復雜的關系進行提煉加工,忽略次要因素,建立若干個數學模型方能解決問題。
第四層次:假設建模。要進行分析、加工和作出假設,然后才能建立數學模型。如研究十字路口車流量問題,假設車流平穩,沒有突發事件等才能建模。
三、建立數學模型應具備的能力。
從實際問題中建立數學模型,解決數學問題從而解決實際問題,這一數學全過程的教學關鍵是建立數學模型,數學建模能力的強弱,直接關系到數學應用題的解題質量,同時也體現一個學生的綜合能力。
1提高分析、理解、閱讀能力。
2強化將文字語言敘述轉譯成數學符號語言的能力。
3增強選擇數學模型的能力。
4加強數學運算能力。
數學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數學運算推理能力是使數學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養,只重視推理過程,不重視計算過程的做法是不可取的。
數學竟賽建模論文(精選18篇)篇八
運籌學與數學建模2門課程聯系密切,在運籌學教學中,適當融入數學建模思想,能大幅度提高學生應用數學解決實際問題的能力.從運籌學教學中教學大綱的改革、教學環節的設計等方面進行了探索與實踐.教學實踐表明,將數學建模思想融入到運籌學教學中能提高課堂教學的效果,鍛煉學生的動手實踐能力.
數學竟賽建模論文(精選18篇)篇九
就當前高等數學的教育教學而言,高數老師對學生的計算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎開展教學活動。作為一門充滿活力并讓人感到新奇的學科,由于教育觀念和思想的落后,課堂教學之中沒有穿插應用實例,在工作的時候學生不知道怎樣把問題解決,工作效率無法進一步提升,不僅如此,陳舊的教學理念和思想讓學生漸漸的失去學習的興趣和動力。
(二)教學方法傳統化。
教學方法的優秀與否在學生學習的過程中發揮著重要的作用,也直接影響著學生的學習成績。一般高數老師在授課的時候都是以課本的順次進行,也就意味著老師“由定義到定理”、“由習題到練習”,這種默守陳規的教學方式無法為學生營造活躍的學習氛圍,讓學生獨自學習、思考的能力進一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學方法,讓學生在課堂中主動參與學習。
二、建模在高等數學教學中的作用。
對學生的想象力、觀察力、發現、分析并解決問題的能力進行培養的過程中,數學建模發揮著重要的作用。最近幾年,國內出現很多以數學建模為主體的賽事活動以及教研活動,其在學生學習興趣的提升、激發學生主動學習的積極性上扮演著重要的角色,發揮著突出的作用,在高等數學教學中引入數學建模還能培養學生不畏困難的品質,培養踏實的工作精神,在協調學生學習的知識、實際應用能力等上有突出的作用。雖然國內高等院校大都開設了數學建模選修課或者培訓班,但是由于課程的要求和學生的認知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學生的整體素質進行培養,提升學生的創新精神以及創造力,讓學生滿足社會對復合型人才的需求,而最好的載體則是高等數學。
高等數學作為工科類學生的一門基礎課,由于其必修課的性質,把數學建模引入高等數學課堂中具有較廣的影響力。把數學建模思想滲入高等數學教學中,不僅能讓數學知識的本來面貌得以還原,更讓學生在日常中應用數學知識的能力得到很好的培養。數學建模要求學生在簡化、抽象、翻譯部分現實世界信息的過程中使用數學的語言以及工具,把內在的聯系使用圖形、表格等方式表現出來,以便于提升學生的表達能力。在實際的學習數學建模之后,需要檢驗現實的信息,確定最后的結果是否正確,通過這一過程中的鍛煉,學生在分析問題的過程中可以主動地、客觀的辯證的運用數學方法,最終得出解決問題的最好方法。因此,在高等數學教學中引入數學建模思想具有重要的意義。
三、將建模思想應用在高等數學教學中的具體措施。
(一)在公式中使用建模思想。
在高數教材中占有重要位置的是公式,也是要求學生必須掌握的內容之一。為了讓教師的'教學效果進一步提升,在課堂上老師不僅要讓學生對計算的技巧進一步提升之余,還要和建模思想結合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學生對公式中使用建模思想理解的更透徹,老師還應該結合實例開展教學。
(二)講解習題的時候使用數學模型的方式。
課本例題使用建模思想進行解決,老師通過對例題的講解,很好的講述使用數學建模解決問題的方式,讓學生清醒的認識在解決問題的過程中怎樣使用數學建模。完成每章學習的內容之后,充分的利用時間為學生解疑答惑,以學生所學的專業情況和學生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學生解決問題的效率。
(三)組織學生積極參加數學建模競賽。
一般而言,在競賽中可以很好地鍛煉學生競爭意識以及獨立思考的能力。這就要求學校充分的利用資源并廣泛的宣傳,讓學生積極的參加競賽,在實踐中鍛煉學生的實際能力。在日常生活中使用數學建模解決問題,讓學生獨自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學習,改正錯誤,提升自身的能力。
四、結束語。
高等數學主要對學生從理論學習走向解決實際問題的能力進行培養,在高等數學中應用建模思想,促使學生對高數知識更充分的理解,學習的難度進一步降低,提升應用能力和探索能力。當前,在高等教學過程中引入建模思想還存在一定的不足,需要高校高等數學老師進行深入的研究和探索的同時也需要學生很好的配合,以便于今后的教學中進一步提升教學的質量。
參考文獻。
[1]謝鳳艷,楊永艷。高等數學教學中融入數學建模思想[j]。齊齊哈爾師范高等專科學校學報,20xx(02):119—120。
[2]李薇。在高等數學教學中融入數學建模思想的探索與實踐[j]。教育實踐與改革,20xx(04):177—178,189。
[3]楊四香。淺析高等數學教學中數學建模思想的滲透[j]。長春教育學院學報,20xx(30):89,95。
[4]劉合財。在高等數學教學中融入數學建模思想[j]。貴陽學院學報,20xx(03):63—65。
數學竟賽建模論文(精選18篇)篇十
第一條,論文用白色a4紙打印(單面、雙面均可);上下左右各留出至少2.5厘米的頁邊距;從左側裝訂。
第二條,論文第一頁為承諾書,第二頁為編號專用頁,具體內容見本規范第3、4頁。
第三條,論文第三頁為摘要專用頁(含標題和關鍵詞,但不需要翻譯成英文),從此頁開始編寫頁碼;頁碼必須位于每頁頁腳中部,用阿拉伯數字從“1”開始連續編號。摘要專用頁必須單獨一頁,且篇幅不能超過一頁。
第四條,從第四頁開始是論文正文(不要目錄,盡量控制在20頁以內);正文之后是論文附錄(頁數不限)。
第五條,論文附錄至少應包括參賽論文的所有源程序代碼,如實際使用的軟件名稱、命令和編寫的全部可運行的源程序(含excel、spss等軟件的交互命令);通常還應包括自主查閱使用的數據等資料。賽題中提供的數據不要放在附錄。如果缺少必要的源程序或程序不能運行,可能會被取消評獎資格。論文附錄必須打印裝訂在論文紙質版中。如果確實沒有需要以附錄形式提供的信息,論文可以沒有附錄。
第六條,論文正文和附錄不能有任何可能顯示答題人身份和所在學校及賽區的信息。
第七條,引用別人的成果或其他公開的資料(包括網上資料)必須按照科技論文寫作的規范格式列出參考文獻,并在正文引用處予以標注。
第八條,本規范中未作規定的,如排版格式(字號、字體、行距、顏色等)不做統一要求,可由賽區自行決定。在不違反本規范的前提下,各賽區可以對論文增加其他要求。
第九條,參賽隊應按照《全國大學生數學建模競賽報名和參賽須知》的要求命名和提交以下兩個電子文件,分別對應于參賽論文和相關的支撐材料。
第十條,參賽論文的電子版不能包含承諾書和編號專用頁(即電子版論文第一頁為摘要頁)。除此之外,其內容及格式必須與紙質版完全一致(包括正文及附錄),且必須是一個單獨的文件,文件格式只能為pdf或者word格式之一(建議使用pdf格式),不要壓縮,文件大小不要超過20mb。
第十一條,支撐材料(不超過20mb)包括用于支撐論文模型、結果、結論的所有必要文件,至少應包含參賽論文的所有源程序,通常還應包含參賽論文使用的`數據(賽題中提供的原始數據除外)、較大篇幅的中間結果的圖形或表格、難以從公開渠道找到的相關資料等。所有支撐材料使用winrar軟件壓縮在一個文件中(后綴為rar);如果支撐材料與論文內容不相符,該論文可能會被取消評獎資格。支撐材料中不能包含承諾書和編號專用頁,不能有任何可能顯示答題人身份和所在學校及賽區的信息。如果確實沒有需要提供的支撐材料,可以不提供支撐材料。
第十二條,不符合本格式規范的論文將被視為違反競賽規則,可能被取消評獎資格。
第十三條,本規范的解釋權屬于全國大學生數學建模競賽組委會。
說明:
(1)本科組參賽隊從a、b題中任選一題,專科組參賽隊從c、d題中任選一題。
(2)賽區可自行決定是否在競賽結束時收集參賽論文的紙質版,但對于送全國評閱的論文,賽區必須提供符合本規范要求的紙質版論文(承諾書由賽區組委會保存,不必提交給全國組委會)。
(3)賽區評閱前將紙質版論文第一頁(承諾書)取下保存,同時在第一頁和第二頁建立“賽區評閱編號”(由各賽區規定編號方式),“賽區評閱紀錄”表格可供賽區評閱時使用(由各賽區自行決定是否使用)。評閱后,賽區對送全國評閱的論文在第二頁建立“送全國評閱統一編號”(編號方式由全國組委會規定),然后送全國評閱。
數學竟賽建模論文(精選18篇)篇十一
摘要:數學作為很多學科的計算工具,可以說是現代科學的基礎,要想利用數學來解決實際問題,首先要建立相應的數學模型,本文在數學建模思想概念和特點的基礎上,從計算機軟件、實際生活中的應用等方面,對其應用的發展進行了分析,最后從分析問題、建立模型、校驗模型三個階段,對數學建模的方法,進行了深入的研究。
引言。
隨著自然科學的發展,利用數學等思想來解決實際問題,越來越受到人們的重視,數學作為一門歷史悠久的自然科學,是在實際應用的基礎上發展起來,但是隨著理論研究的深入,現在數學理論已經非常先進,很多理論都無法付諸實踐,在這種背景下,如何利用現有的數學理論來解決實際問題,成為了很多專家和學者研究的問題。通過實際的調查發現,要想利用數學來解決實際問題,首先要建立相應的數學模型,將實際的問題轉化成數學符號的表達方式,這樣才能夠通過數學計算,來解決一些實際問題,從某種意義上來說,計算機就是由若干個數學模型組成的,計算機軟件之所以能夠解決實際問題,就是根據實際應用的需要,建立了一個相應的數學模型,這樣才能夠讓計算機來解決。
數學是一門歷史悠久的自然科學,在古時候,由于實際應用的需要,人們就已經開始使用數學來解決實際問題,但是受到當時技術條件的限制,數學理論的水平比較低,只是利用數學來進行計數等,隨著經濟和科技水平的提高,尤其是在工業革命之后,自然科學得到了極大的發展,對于利用自然科學來解決實際問題,也成為了人們研究的重點,在市場經濟的推動下,人們將這些理論知識轉化成為產品。計算機就是在這種背景下產生的,在數學理論的基礎上,將電路的通和不通兩種狀態,與數學的二進制相結合,這樣就能夠讓計算機來處理實際問題,從本質上來說,這就是數學建模思想的范疇,但是在計算機出現的早期,數學建模的理論還沒有形成,隨著計算機軟件技術的發展,人們逐漸的意識到數學建模的重要性,發現利用數學建模思想,可以解決很多實際的問題,而數學建模的概念,就是將遇到的實際問題,利用特定的數學符號進行描述,這樣實際問題就轉化為數學問題,可以利用數學的計算方法來解決。
如何解決實際問題,從有人類文明開始,就成為了人們研究的重點,隨著自然科學的發展,出現了很多具體的學科,利用這些不同的學科,可以解決不同的實際問題,而數學就是其中最重要的一門學科,而且是其他學科的基礎,如物理學科中,數學就是一個計算的工具,由此可以看出數學的重要性,進入到信息時代后,計算機得到了普及應用,無論是日常生活中還是工作中,計算機都有非常重要的應用,而在信息時代,注重的是解決問題的效率。與其他解決問題的方式相比,數學建模顯然更加科學,現在數學建模已經成為了一門獨立的學科,很多高校中都開設了這門課程,為了培養學生們利用數學解決實際問題的能力,我國每年都會舉辦全國性的數學建模大賽,采用開放式的參賽方式,對學生們的數學建模能力進行考驗,而大賽的題目,很多都是一些實際問題,對于比賽的結果,每個參賽隊伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實際的問題,可以建立多個數學模型進行解決,但是執行的效率具有一定的差異,如有些計算的步驟較少,而有些計算的過程比較簡單,而如何評價一個模型的效率,必須從各個方面進行綜合的考慮。
2.1計算機軟件中數學建模思想的應用。
通過深入的分析可以知道,計算機之所以能夠解決實際問題,很大程度上依賴與計算機軟件,而計算機軟件自身就是一個或幾個數學模型,在軟件開發的過程中,首先要進行需求的分析,這其實就是數學建模的第一個環節,對問題進行分析,在了解到問題之后,就要通過計算機語言,對問題進行描述,而計算機語言是人與計算機進行溝通的語言,最終這些語言都要轉化成0和1二進制的方式,這樣計算機才能夠進行具體的計算。由此可以看出,計算機就是依靠數學來解決實際問題,而每個計算機軟件,都可以認為是一個數學模型,如在早期的計算機程序設計中,受到當時計算機技術水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數學模型,然后將這個模型轉化成相應的計算機語言,這樣計算機就可以解決實際的問題,由于計算機能夠自行計算的特點,只要輸入相應的參數后,就可以直接得到結果,不再需要人為的計算。
經過了多年的發展,現在數學建模自身已經非常完善,為了培養我國的數學建模人才,從1992年開始,每年我國都會舉辦一屆全國數學建模大賽,所有的高校學生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設置的也比較靈活,會有多個題目提供給隊員選擇,學生可以根據自己的實際情況,來選擇一個最適合自己的問題。而數學建模大賽舉辦的主要目的,就是讓學生們掌握如何利用數學理論,來解決實際問題,在學習數學知識的過程中,很多學生會認為,數學與實踐的距離很遠,學習的都是純理論的知識,學習的興趣很低,與一些實踐密切相關的學科相比,選擇數學專業的學生很少,而數學建模的出現,在很大程度上改善了這種情況,讓人們真正的了解數學,并利用數學來解決復雜的問題。受到特殊的歷史因素影響,我國自然科學發展的起步較晚,在建國后經歷了很長一段時間封,閉發展,與西方發達國家之間的交流比較少,因此對于數學建模等現代科學,研究的時間比較短,導致目前我國很少會利用數學建模來解決實際問題,相比之下,發達國家在很多領域中,經常會用到數學建模的知識,如在企業日常運營中,需要進行市場調研等工作,而對于這些調研工作的處理,在進行之前都會建立一個數學模型,然后按照這個建立的模型來處理。
從本質上來說,數學是在實際應用的基礎上,逐漸形成的一門學科,但是受到當時技術水平的限制,雖然人們已經懂得去計算,卻并知道自己使用的是數學知識,隨著自然科學的發展,對數學的應用越來越多,而數學自身理論的發展速度很快,遠遠超過了實際應用的范圍,同時隨著其他學科的發展,數學變成了一種計算的工具,因此數學應用的第一個階段中,主要是作為一種工具。隨著電子計算機的出現,對數學的應用達到了一個極限,人們在數學和物理的基礎上,制作出了能夠自動計算的機器,在計算機出現的早期,受到性能和體積上的限制,只能進行一些簡單的數學計算,還不能解決實際的問題,但是計算機語言和軟件技術的.發展,使其在很多領域得到了應用,在計算的基礎上,能夠解決很多問題,而軟件程序的開發,其實就是建立數學模型的過程,由此可以看出,數學建模思想應用的第二階段中,主要是以現代計算機等電子設備的方式,來解決實際的問題。
3.1分析問題。
數學模型的應用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實際問題時,首先要對問題進行具體的分析,首先就是看是否能夠轉化成數學符號,如果能夠直接用數學語言來進行描述,那么就可以容易的建立相應的數學模型,但是通過實際的調查發現,隨著經濟和科技的發展,遇到的問題越來越復雜,其中很多都無法直接用數學語言來描述,這就增加了數學建模的難度。由此可以看出,分析問題作為數學建模的第一個環節,也是最重要的一個環節,如果問題分析的不夠具體,那么將無法建立出數學模型,同時對數學模型的建立也具有非常重要的影響,通過實際的調查發現,能夠建立高效率的數學模型,都是對問題分析的比較徹底,甚至有些獨特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數學建模自身的發展,現在建立模型的過程中,對于一個實際的問題,經常需要建立多個模型,這樣通過多個數學模型協同來解決一個問題。
在分析實際問題后,就要用數學符號來描述要解決的問題,這是建立數學模型的準備環節,要想利用數學來解決實際問題,無論采用哪種方式,都要轉化成數學語言,然后才能夠通過計算的方式解決,而數學模型的過程,就是在描述完成后,建立相應的數學表達式,通常情況下,在分析問題時,都能夠發現某種內在的規律,這個規律是數學建模的基礎。如果無法找到這個規律,顯然就不能利用現有的一些數學定律,從而建立相應的表達式,最后解決相應的問題,由此可以看出,分析問題的內在規律,是影響數學建模的重要因素,而這個規律的發現,除了在現有的數學知識外,也可以結合其他學科的知識,尤其是現在遇到的問題越來越復雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現在復雜的問題,經常需要建立多個模型。因此現在數學建模的難度越來越大,從近些年全國數學建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現了一些歷史上的難題,而不同學生根據自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實際問題的解決提供了良好的參考,目前我國對數學建模的研究有限,尤其是與西方發達國家相比,實踐的機會還比較少。
在數學模型建立之后,對于這個模型是否能夠解決實際問題,具體的執行效率如何,都需要進行校驗,因此檢驗是數學模型建立最后的一個環節,也是非常重要的一個步驟,通常情況下,經過校驗都能夠發現模型中存在的一些問題,從而進行完善,這樣才能夠保證嚴謹性,在實際校驗的過程中,要對數學模型的每個部分進行驗證,通過輸入特定的數據,看得到的結果是否符合理論值,如果沒有問題,就說明該模型可以解決實際問題。除了檢驗模型的準確外,校驗還有另外一個作用,就是優化模型,在選定數據后,能夠看到數學模型計算的整個過程,這時就可以對具體的細節進行優化,如哪部分可以減少計算的步驟,或者簡化計算的方式等,這樣可以使整個模型更加科學、合理,由此可以看出,校驗工作對于數學模型的建立,具有非常重要的意義。
4結語。
通過全文的分析可以知道,對于數學理論的應用,從很久之前就已經開始了,但是數學建模思想的出現,卻是隨著計算機技術的發展,逐漸形成的一門學科,電子計算機的出現,在很大程度上改變了處理事情的方式,利用計算機軟件,只要輸入相應的參數,就可以直接得到結果,這正是數學模型完成的任務,只是計算機的出現,省略了中間的計算過程,因此計算機軟件的方式,是數學建模思想最好的應用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應的程序。
數學竟賽建模論文(精選18篇)篇十二
1培養創造性思維學生在學習數學知識的過程中,雖然其接受的知識和經驗是前人研究和發現的成果,但對于學生來說,其處于知識再發現的地位。教師向學生教授數學發現的思維和方法,換言之就是重點引導學生重溫數學經驗和知識的研究道路,進而保證學生的再發現能夠順利實現。這也是培養學生創新思維和能力的一個重要途徑。利用數學建模能夠有效地彌補數學教學過程中存在的缺陷,使學生充分體會到數學發現過程中的樂趣,進而激發學生學習數學的熱情和積極性,培養其創造性思維。
2選擇經典案例開展數學建模討論、分析教師在實際的數學課堂教學中,可選擇一些社會實際案例為講授分析的主要對象,如實際生活和高科技的熱點話題。教師可對此類實例進行必要的分析與講解,在此過程中,積極引導學生獨立鉆研和研究問題,并培養學生主動查閱相關資料、自主討論的能力。與此同時,教師還要及時與學生進行交流,答疑釋難,并要求學生在自己實際能力的基礎上構建恰當的模型,由易到難,循序漸進。除此之外,還要使學生充分發揮其主觀能動性,培養學生發現問題,思考問題以及處理問題的能力。以微積分方程為例,教師在課堂教學中,可以“經濟增長”作為主要案例,向學生系統地闡述微積分方程的實際應用過程,進一步加深學生對知識的理解、掌握和應用。
3同時開設數學建模與高等數學課程在職業院校數學教學過程中,同時開設數學建模與高等數學課程,能夠有效提高學生對基礎知識的理解能力和掌握程度,促進學生實踐動手能力的培養。在數學建模課程的開設中,應該在教師的指導下,充分利用教學軟件,引導學生動手實驗和計算,加深學生對知識的掌握。在此過程中,使學生充分了解到運用數學理論和方法去分析和解決實際問題的全過程,進一步提高學生的積極性和思維意識能力,使他們意識到數學在實際生活應用中的關鍵作用。同時,促使學生將計算機技術融入數學學習中去,以現代化的高新科技為媒介,著手實際社會問題的解決。
4創新教學模式根據職業院校學生學習的特點和知識水平,重點提高學生運用數學的技能和思維方式來處理實際生活和專業問題的能力。要想從根本上培養學生的創新能力,一定要改變原來單一固定的教學模式,嘗試和探索基于學生實際情況的教學措施和方式。經過長期的實踐經驗研究,討論式教學和雙向教學方式對培養學生的能力非常有效。這兩種教學模式能夠加深學生參與課堂教學的程度,激發學生學習數學的'主動性,最終達到提高教學效率的目的。所以,數學建模可以以具體問題為媒介,采用小組集體討論解決問題的方法,培養學生的創新能力和意識,進一步加快職業技術院校數學教學模式的創新。
5組建數學建模團隊在實際的數學教學中,教師可引導學生構建數學建模團隊。在教師對數學建模的深入分析為基礎,充分調動學生參與問題解決的主動性,師生積極互動,最終完成數學建模。如此一來,不僅能夠有效培養學生積極進取的良好學習態度,而且還能夠促進學生數學邏輯思維能力的提高。
6搭建校內數學建模網絡平臺在職業技術院校中構建校內數學建模網絡平臺,積極宣傳與數學建模有關的知識經驗,為學生主動獲取數學建模信息提供各種數據資料。數學建模網絡平臺的搭建,能夠有效促進教師和學生,學生與學生之間的交流與溝通,大大縮短學生和數學建模之間的距離,進而促進學生自主學習能力的提高和培養。
總而言之,數學建模思想是學生將基礎理論知識與實際解決問題的方法相結合的最佳途徑。將數學建模融入職業院校數學中,全面培養學生的創新意識和數學應用能力,進一步使數學為達成學院的教學和培養計劃奠定基礎,為培養更多更優秀的現代化社會人才服務。
數學竟賽建模論文(精選18篇)篇十三
在高等教育事業改革不斷深化的背景下,為了提升教育教學質量,新時期對大學數學教學提出了更高的要求。大學數學作為課堂教學的主體,教師在傳授知識的同時,要注重學生學習能力和解決問題能力的培養。
數學知識來源于生活,應用于生活,如微積分作為高等數學知識中的典型代表,在各個行業中具有不可或缺的作用。為此,任課教師在大學數學教學中培養學生發現問題、分析問題和解決問題的能力十分重要,在傳授知識的過程中幫助學生利用所學知識來解決實際問題。一般情況下,教師著重介紹相關數學概念和原理,推導常用公式,促使學生能夠記住公式,學會公式的應用過程,逐漸掌握解題技巧。
因此,如何能夠在傳授知識的同時,促使學生掌握數學學習方法,將所學知識應用到實踐中來解決數學問題是一個首要問題。從大量教學實踐中可以了解到,在大學數學教學中滲透數學建模思想十分重要,有助于激發學生的學習興趣,促使學生積極投入其中,切實提升學生的數學專業水平。
在大學數學教學中滲透數學建模思想,應該結合實際情況,深入挖掘數學知識。在教學中,教師應該充分發揮自身引導作用,聯系學生數學知識實際學習情況,有針對性地整合數學知識,了解相關數學內容,這樣不僅可以豐富教學內容,還可以為課堂教學注入新的活力,有效激發學生的學習興趣,提升學習成效。具體表現在以下方面:
(一)閉區間連續函數的性質。
閉區間連續函數的性質內容是大學數學教學中的重要組成部分,由于知識理論性較強,知識較為抽象,學習難度較大,在講解完相關理論知識后,可以引入椅子的穩定問題,創建數學模型,提問學生如何在不平穩的地面上平穩地放置椅子。學生可以了解到這一問題同所學知識相關聯,閉區間連續函數的性質可以解決這一問題。學生整合所學知識,通過對問題的分析,可以了解到利用介值定理來解決問題。通過建立數學模型,學生更加充分地掌握了閉區間連續函數的`性質,提升了學習成效,為后續知識學習打下了堅實的基礎。
(二)定積分。
定積分是高等數學教學中的重要組成部分,在解決幾何問題時均有所應用,并且被廣泛應用在實際生活中。如,在一道全國大學生數學建模競賽題目中,計算煤矸石的堆積,煤礦采煤時所產生的煤矸石,為了處理煤矸石就需要征用土地來堆放煤矸石,根據上級主管部門的年產量計劃和經費如何堆放煤矸石?題目中的關鍵點在于堆放煤矸石的征地費用和電費的計算。征地費計算難度較小,但是煤矸石堆積的電費計算難度較高,但此項內容涉及定積分中的變力做功知識點。學生掌握這些內容后就可以建立數學模型,更加高效地了解如何根據預期開采量來堆放煤矸石。通過數學模型,學生也可以了解到定積分內容同實際生活之間的聯系,學習積極性就會大大提升。
(三)最值問題。
在高等數學中,最值問題占比比較大,同時在實際生活中應用較為普遍,導數知識可以解決實際生活中的最值問題,這就需要提高對導數知識實際應用的重視程度。教師在為學生講解完導數的相關概念知識后,通過建立關于天空的采空模型,提問學生為什么雨后太陽出來了,雨滴還在空中,那么將為人們呈現出什么樣的景色?學生回答彩虹。繼續提問彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對此,學生的興趣較為濃厚,可以分為若干個小組進行討論。通過分析可以得出,雨滴可以反射太陽光,形成彩虹。結合光線的反射和折射定律,借助所學的導數知識來計算得出太陽光偏轉角度的最值,有效解決實際學習的問題,加深對知識的理解和記憶,提升數學知識學習成效。
(四)微分方程。
微分方程知識同實際生活之間息息相關,建立微分方程可以有效解決實際生活中的問題。這就需要學生在了解微分方程知識的基礎上,進一步建立數學模型來解決問題。如,在當前社會進步和發展下,人均物質生活水平顯著提升,肥胖成為危害人們身體健康的主要問題之一,受到社會各界廣泛的關注和重視。通過問題精簡化和假設,可以得到微分方程模型,在分析方程中飲食控制和運動鍛煉兩個關鍵要素后,有助于避免人們走入減肥誤區,幫助他們樹立正確的減肥理念。
(五)矩陣。
在高等數學教學中,矩陣的概念較為抽象和復雜,在講解問題之前,應該根據知識點來創設教學情境,輔助教學活動。通過引入企業工廠生產總成本模型,充分描述工廠生產中需要的原材料和勞動力,并且詳細記錄管理費用。這有助于加深人們對矩陣概念的認知和理解,提升學習成效,同時幫助學生深入理解和記憶,鍛煉學生的數學解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學生的數學建模意識。
綜上所述,在大學數學教學中,可以通過數學建模思想來引導學生養成良好的自主學習能力,發揮自身的主體能動性和創新能力,提升學生解決問題的能力,將所學知識靈活運用到實際生活中,養成良好的數學素養。
數學竟賽建模論文(精選18篇)篇十四
走美杯”是“走進美妙的數學花園”的簡稱。
“走進美妙的數學花園”中國青少年數學論壇是中國少年科學院創新素質教育的品牌活動。20xx年,由國際數學家大會組委會、中國數學會、中國教育學會、中國少年科學院成功舉辦了首屆“走進美妙的數學花園”中國少年數學論壇,至今已連續舉辦七屆,全國三十多個城市近三十萬人參與了此項活動,在全國青少年中產生了巨大的影響。“走進美妙的數學花園”中國青少年數學論壇活動是一項面對小學三年級至初中二年級學生的綜合性數學活動。通過“趣味數學解題技能展示”、“數學建模小論文答辯”、“數學益智游戲”、“團體對抗賽”等一系列內容豐富的活動提高廣大中小學生的數學建模意識和數學應用能力,培養他們一種正確的思想方法。著名數學家陳省身先生兩次為同學們親筆題詞“數學好玩”和“走進美妙的數學花園”,大大鼓舞了廣大青少年攀登數學高峰的熱情和信心,使同學們自覺地成為學習的主人,實現從“學數學”到“用數學”過程的轉變,從而進一步推動我國數學文化的傳播與普及。
“走美”活動已連續舉辦七屆,近30萬青少年踴躍參與,已取得良好社會效果,并被寫入全國少工委《少先隊輔導員工作綱要(試行)》,向全國少年兒童推廣。
“走美”作為數學競賽中的后起之秀,憑借其新穎的考試形式以及較高的競賽難度取得了非常迅速的發展,近年來在重點中學選拔中引起了廣泛的關注。客觀地說“走美”一、二等獎對小升初作用非常大,三等獎作用不大。
1、活動對象。
全國各地小學三年級至初中二年級學生。
2、總成績計算。
筆試獲獎率:
一等獎5%,二等獎10%,三等獎15%。
3、筆試時間。
每年3月上、中旬。
報名截止時間:每年12月底。
走美杯比賽流程。
1、全國組委會下發通知,各地組委會開始組織工作。
2、學生到當地組委會報名,填寫《報名表》。
3、各地組委會將報名學生名單全部匯總至全國組委會。
4、全國“走進美妙的數學花園”趣味數學解題技能展示初賽(全國統一筆試)。
6、全國組委會公布初賽獲獎名單并頒發獲獎證書。
7、獲得初賽一、二、三等獎選手有資格報名參加暑期赴英國劍橋大學數學交流活動。
8、各地按照組委會要求提交數學建模小論文。
9、前各地組委會上報參加全國總論壇學生名單。
10、全國總論壇和表彰活動。
數學竟賽建模論文(精選18篇)篇十五
眾所周知,高等數學是所有自然學科的基礎,一個大學生要想在以后的工作、學習中大展宏圖,那么就一定少不了堅實的高等數學基礎。如何解決大學生在學習高等數學時碰到的問題?如何調動大學生學習高等數學的積極性?讓學生們了解高等數學的用途,真正愿意靜下心來好好學習高等數學,努力為以后的發展打好數學基礎。一直以來,各所高校的教師們都在努力的想辦法、找對策,一些實用有效的方法已經提出并且在逐步推廣,比如,問題驅動式的教學方法和基于pbl的教學方法等。筆者從所在學校的學生實際學習情況出發,根據幾年來的教學心得和積累,打算提出一種較為實用的教學方法——利用數學建模的思想調動大學生學習高等數學的積極性。該方法在筆者所教授的班級中已經實際應用過幾屆,學生普遍反映效果較好,任課老師也認為該方法確實能極大地調動學生的學習積極性。
提到高等數學,學生們的第一反應往往是:各種公式塞滿黑板,各種運算充斥腦海;定義、定理、推論一個連著一個;極限、連續、可導可積一個涵蓋另一個[1]。和高中數學相比,記憶的負擔輕了(實際上是知識點太多,記不住了),而對思維的要求卻提高了。對大學生來說,每一次的高數課,都是一次大腦的思維訓練,時刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內容就不知所云了。這樣的要求短時間可以達到,長久下去學生們會覺得很辛苦,很有壓力,會出現抱怨。筆者碰到過這樣的學生,剛開始時,興致勃勃,雄心萬丈,可到后來興趣索然,馬虎應對。怪學生嗎?誠然學生有責任,但任課老師也該負很大的責任。作為高等數學的老師我們經常要面對學生提的這些問題:(1)我學的專業和高等數學相差甚遠,有可能這一輩子都不會用到高等數學的知識,那我學高等數學的目的何在?(2)老師您天天鼓吹高等數學的強大功能和廣泛用途,但是通過一學期的學習,我發現除了對付考試有用,真不知高等數學可以用在何處?這些問題不及時解決,時間長了一定會影響到大學生對高等數學的學習積極性,甚至有可能會產生厭學的情緒和氛圍。有些極端的學生,期末考試之后,一聽到自己高等數學考過了,立馬將高等數學的課本給撕了,可想而知高等數學對其造成的壓力有多大[2]。如何解決大學生在學習高等數學時碰到的問題?如何調動大學生學習高等數學的積極性?讓學生們了解高等數學的用途,真正愿意靜下心來好好學習高等數學,努力地為以后的發展打好數學基礎。筆者從所在學校的學生實際學習情況出發,根據幾年來的教學心得和積累,打算提出一種較為實用的教學方法——利用數學建模的思想調動大學生學習高等數學的積極性。
一、以實際問題反推解決問題時我們需要的高等數學知識。
有這樣一個實際問題:報童每天清晨從報社購進報紙零售,晚上將沒賣掉的報紙退回給報社。假設報紙每份的購進價為b元,零售價為a元,退回價為c元,自然地有abc。這就是說,報童每售出一份報紙賺a-b元,每退回一份報紙賠b-c元,報童每天如果購進的報紙太少,那么會不夠賣,就會少賺錢;如果每天購進的報紙太多,那么會賣不完,將要賠錢。請為報童規劃一下,他該如何確定每天購進的報紙份數,以獲得最大的收入[3]。
現在我們來反推該問題涉及到的高等數學的知識:首先,通過分析題目可知,問題解決的關鍵在于——如何確定每天的報紙需求量,注意每天的報紙需求量是隨機變化的?解決這個關鍵問題的知識我們早就掌握了,分別是數理統計中的頻率連續化、概率論中的概率密度與期望和高等數學中的定積分[4]。
二、利用高等數學的解決實際問題。
f(r)[4]。如果求出了f(r),那么。
g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)。
現在我們來求f(r),假定報童已經通過自己的經驗和其他渠道掌握了一年(365天)中每天報紙的售出份數,那么在他的銷售范圍內,每天報紙日需求量r的概率f(r)為:
f(r)=,r=(0,1,2,3,…)。
其中k表示為賣出r份的天數。
g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)。
通過上面的分析,可知實際問題歸結為,在p(r)和a,b,c已知時,求n使得g(n)最大。
=-(b-c)p(r)dr+(a-b)p(r)dr.(3)。
令=0,得到=,又因為p(r)dr+p(r)dr=1,所以p(r)dr=.(4)。
在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識一定可以求出n。也即可以確定每天購進的報紙份數,使報童每天獲得最大的收入。
三、利用現實問題,讓學生學會思考,給他們提供創造成就感的機會。
通過上面碰到的實際問題,可以很容易地說服同學們靜下心來好好學習高等數學。因為通過實際問題的求解,學生們了解到了,要想解決一個實際問題(哪怕是很小的問題),也需要大量的高等數學知識的儲備;學生們也大概領略到了高等數學的用途與功能。這樣的教學方法簡單、直接,勝過老師課堂上反復的嘮叨與強調。有了這樣的一些實際問題,老師們就可以大膽地將數學建模思想引入高等數學的教學當中,讓學生們在解決實際問題中學會思考,掌握知識,提高能力。
通過訓練后,碰到實際問題,同學們會自然的想到我們的教學方法:(1)這些實際問題涉及到的高等數學知識?那些自己掌握了,那些還沒有弄明白,學要加強學習。(2)知識點找到后,如何建立起數學與實際問題求解之間的關系?也即如何建立數學模型。(3)除了老師給的題目,自己本專業中的實際問題,能否用高等數學的知識去解決?通過思考、分析、解決這些問題,學生們會有一種創造創新的成就感,會愿意自主學習,自然而然其學習高等數學的積極性也會大大提高了。
數學竟賽建模論文(精選18篇)篇十六
對于高職院校的學生來講,數學在其教學過程中起著基礎性的作用,對于學生后續的學習相當關鍵。但是從現階段高職院校數學教學的基本情況來看,數學教師的教學方法以及教學策略都相當落后,對于學生數學興趣的提升造成了不同程度的影響。在這樣的背景下,相關專家提出了數學建模的方式,希望以此提升高職院校高等數學的教學效率。本文結合數學建模在高職高專人才培養當中的意義和作用入手,對于其中的應用策略進行全面的分析,希望為相關單位提供一個全面的參考。
隨著我國社會的發展,經濟產業結構日益升級,因此高等院校的人才需求日益擴大,對于高職教育的發展提供了前所未有的契機。在這樣的背景下,從數學建模入手,將其思想融入到高等教育的數學教學當中,對于其中的策略和方法進行全面的研究應該是一項具有普遍現實意義的工作。
從近些年的發展來看,參加過數學競賽的學生在科研能力等方面都具有比其他同學更強的優勢,因此數學建模在提升學生創新能力、提高學生知識水平以及調動學生的.學習興趣都具有十分重要的意義。比如在解決實際問題的時候,數學建模通過利用各種技巧,可以使得學生分析問題、創造能力得以全面的提升,進而使得學生在摒棄原始思考問題方式的基礎上,敢于向傳統的知識發出挑戰,對于學生的綜合能力的全面提升相當關鍵。其次,數學知識本就源于生活,因此在建模的基礎上學生就可以帶著問題去思考,這對于數學知識整體性的發揮以及解決問題能力的提升都具有十分重要的意義。最后,面對傳統數學的解決方式,很多學生望而生畏,因此主動分析問題的欲望就會受到遏制。在這樣的背景下,通過數學建模方式,學生會發現數學方法的靈活性,進而使得他們解決問題的能力得以全面的提升。
3.1制定切實可行的教學大綱,從而使得教學進度得以保障。教學大綱在高職教學當中起著十分重要的作用,這對于教學內容的合理性以及提升學生學習的針對性都具有十分重要的意義[1]。比如在教學高等數學(一)的選修模塊時,教學大綱的制定應該結合學生的專業,從而使得學生的數學學習真正取得實效。比如可以為理工類的學生選擇無窮級數以及傅里葉變換的內容;機械類的學生選擇線性代數以及解析幾何作為教學內容,從而使得學生的綜合能力得以全面的提升。3.2開展“三段式”的教學模式。數學建模在以解決實際問題為核心的過程中,使得學生分析問題以及組織問題的能力得以全面的提升,這種方式的本質為素質教育,因此不能和現行的其他教學模式分割開來,這就需要相關部門開展“三段式”的教學模式,使得學生的數學興趣得以全面的提升。其中,第一段需要還原數學知識的原創過程,使得學生明確數學知識的產生過程,進而讓學生從生活案例當中發現數學的價值,比如知道極限是由人影的長度變化引起的,導數是由于駕車的速度引入的,使得學生發現知識的價值,進而就會大大提升自己的學習興趣和探究意識。第二段:講解數學知識。數學建模是在實際問題當中引入的,因此要通過具體數學知識的講解使得學生明確數學建模的真正價值,比如在講解微積分的過程中,可以以“極限-微分-積分”為主線,使得學生對于數學的分析能力真正得以提升[2]。然后在為學生積極引入大量數學圖表的基礎上,為增強學生的感性認識,進而提升學生的綜合能力奠定堅實的基礎。第三段:數學知識的運用。隨著社會的發展,數學的應用在各行各業都發揮出巨大的作用,因此對于高等數學在實際生活當中發揮出來的作用進行全面的探究是實現這種知識價值的真正途徑。在這樣的背景下,高等數學教師要將每個知識點的運用真正灌輸給學生,比如指數增長在銀行計息當中的應用、定積分在學習曲線當中的應用、再生資源在數學開發以及管理當中的應用等等。從而使得學生數學學習中的創新意識以及應用能力得以全面的提升。3.3開設數學實驗,提升學生的綜合素質。數學建模為學生提供了一種真正的“數學實驗”,在這種實驗的過程中,學生對于數學知識的發展以及由來過程都會得到進行全面的考慮,這對于他們數學探索意識的提升具有十分重要的意義。另外,在計算機輔助實驗的過程中,學生的動腦能力也會得到全面的提升,這對于學生主動的學習數學相當關鍵。因此在教學過程中,教師要積極利用這種方式對于學生進行全面的培養。
總之,隨著我國經濟水平的不斷提升,社會對于高職院校的重視力度日益提升,因此對于高職院校當中數學建模思想在高等數學教學當中的應用進行全面的分析是實現學生綜合素質得以全面提升的關鍵措施,這對于學生的長遠發展也相當關鍵,相關教育工作者要加大在這方面的研究力度,力求將高職院校的學生培養成為新時代所需要的人才。
[1]吳健輝,黃志堅,汪龍虎.對數學建模思想融入高等數學教學中的探討[j].景德鎮高專學報,20xx,(4).
[2]張卓飛.將數學建模思想融入大學數學教學的探討[j].湘潭師范學院學報(自然科學版),20xx,(1).
數學竟賽建模論文(精選18篇)篇十七
信息化時代,數學科學與其他學科交叉融合,使得數學技術變成了一種普適性的關鍵技術。大學加強數學課程的應用功能,不但可以為學生提供解決問題的思想和方法,而且更為重要的是可以培養學生應用數學科學進行定量化、精確化思維的意識,學會創造性地解決問題的應用能力。數學建模課程將數學的基本原理、現代優化算法以及程序設計知識很好地融合在一起,有助于培養學生綜合應用數學知識將現實問題化為數學問題,并進行求解運算的能力,激發學生對解決現實問題的探索欲望,強化數學課程本身的應用功能,凸顯數學課程的教育價值,適應大學數學課程以培養學生創新意識為宗旨的教育改革需要。
大學傳統的數學主干課程,如高等數學、線性代數、概率論與數理統計在奠定學生的數學基礎、培養自學能力以及為后續課程的學習在基礎方面發揮奠基作用。但是,這種原有的教學模式重在突出培養學生嚴格的邏輯思維能力,而對數學的應用重視不夠,這使得學生即使掌握了較為高深的數學理論,卻并不能將其靈活應用于現實生活解決實際問題,更是缺乏將數學應用于專業研究和軍事工程的能力,與創新教育的基本要求差距甚遠。教育轉型要求數學教學模式從傳統的傳授知識為主向以培養能力素質為主轉變,特別是將數學建模的思想方法融入到數學主干課程之中,在教學過程中引導學生將數學知識內化為學生的應用能力,充分發揮數學建模思想在數學教學過程中的引領作用。數學課程教學改革要適應這一教學模式轉型需要,深入探究融入式教學模式的理論與方式,是推進數學教育改革的重要舉措。
2.1理清數學建模思想方法與數學主干課程的關系。數學主干課程提供了大學數學的基礎理論與基本原理,將數學建模的思想方法有機地融入到數學主干課程中,不但可以有效地提升數學課程的應用功能,而且有利于深化學生對數學本原知識的理解,培養學生的綜合應用能力。深入研究數學主干課程的功能定位,主要從課程目標上的一致性、課程內容上的互補性、學習形式上的互促性、功能上的整體優化性等方面,研究數學建模本身所承載的思想、方法與數學主干課程的內容與邏輯關系,闡述數學建模思想方法對提高學生創新能力和對數學教育改革的重要意義,探索開展融入式教學及創新數學課程教學模式的有效途徑。
2.2探索融入式教學模式提升數學主干課程應用功能的方式。融入式教學主要有輕度融入、中度融入和完全融入三種方式。根據主干課程的基本特點,對課程體系進行調整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數學建模的思想與方法。以學生能力訓練為主導,在培養深厚的數學基礎和嚴格的邏輯思維能力的基礎上,充分發揮數學建模思想方法對學生思維方式的培養功能和引導作用,培養學生敏銳的分析能力、深刻的'歸納演繹能力以及將數學知識應用于工程問題的創新能力。
2.3建立數學建模思想方法融入數學主干課程的評價方式。融入式教學是處于探索中的教學模式,教學成效有待于實踐檢驗。選取開展融入式教學的實驗班級,對數學建模思想方法融入主干課程進行教學效果實踐驗證。設計相應的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數量關系、大膽嘗試進行建模求解等多方面對實驗課程的教學效果進行檢驗,深入分析融入式教學模式的成效與不足,為探索有效的教學模式提出改進的對策。
3.1改革課程教學內容,滲透數學建模的思想方法。傳統的數學主干課程教學內容,將數學看作嚴謹的演繹體系,教學過程中著力于對學生傳授大學數學的基礎知識,而對應用能力的培養卻重視不夠。使得本應能夠發揮應用功能的數學知識則淪為僵死的教條性數學原理,這失去了教學的活力。學生即使掌握了再高深的數學知識,仍難以學會用數學的基本方法解決現實問題。現行的大學數學課程教學內容中,適當地滲透一些應用性比較廣泛的數學方法,如微元法、迭代法及最佳逼近等方法,有利于促進學生對數學基礎知識的掌握,同時理解數學原理所蘊涵的思想與方法。
這樣,在解決實際問題的時候,學生就會有意識地從數學的角度進行思考,嘗試建立相應的數學模型并進行求解,拓展了數學知識的深度與廣度,提升了學生的數學應用能力四、結語數學建模是數學科學在科技、經濟、軍事等領域廣泛應用的接口,是數學科學轉化成科學技術的重要途徑。在數學主干課程中融入數學建模的思想與方法,可以推動大學數學教育改革的深入發展,加深學生對相關知識的理解和掌握,有助于從思維方式上培養學生的創新意識與創新能力。
此外,數學建模思想方法融入教學主干課程還涉及到許多問題,比如數學建模與計算技術如何有效結合以進行模擬仿真、融入式教學模式的基本理論、構建新的課程體系等問題,仍將有待于更深入的研究。
數學竟賽建模論文(精選18篇)篇十八
為了培養小學生良好的數學學習興趣,激發他們的數學潛能,教師需要采取必要的措施注重數學建模思想的有效培養,促進學生的全面發展。在制定相關培養策略的過程中,教師應充分考慮小學生的性格特點,提高數學建模思想培養的有效性。基于此,文章將從不同的方面對小學生數學建模思想的培養策略進行初步的探討。
作為小學數學教學中的重要組成部分,數學建模思想的滲透及相關教學活動的順利開展,有利于提高復雜數學問題的處理效率,保持數學課堂教學的高效性。要實現這樣的發展目標,增強小學生數學建模思想的實際培養效果,需要加強對學生動手實踐能力的培養,激發學生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環節中,可能會存在一定的問題,影響著數學教學計劃的實施。因此,教師需要利用學生動手實踐能力的作用,實現數學建模思想的有效培養,促使小學生能夠在數學建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學生認為邊越長角度也越大。為了使學生能夠對其中的知識點有更加正確而全面的認識,教師可以通過在黑板上設置一些能夠活動的三角板,讓學生親自動手操作,以此得出角與邊長的正確關系,為后續教學計劃的實施打下堅實的基礎。通過這種教學方法的合理運用,可以激發出學生們在數學建模學習中的更高興趣,豐富他們的想象力,從而使他們對數學建模思想有一定的了解,在未來學習過程中能夠保持良好的`數學建模能力。
通過對小學階段各種數學實踐教學活動實際概況的深入分析,可知構建良好的數學模型有利于加深學生對各知識(福建省莆田市秀嶼區東嶠前江小學,福建莆田351164)點的深入理解,增強其主動參與數學建模教學活動的積極性。因此,為了使小學生數學建模思想培養能夠達到預期的效果,教師需要結合實際的教學內容,建立必要的數學參考模型,提升學生對數學建模思想的整體認知水平。比如,在講授“異分母分數加減法”這部分知識的過程中,可以設置“0.8千克+300克”“1.6千克-400克”等問題,向學生提問是否可以直接計算,并說出原因。當學生通過對問題的深入思考,總結出“單位不同不能直接計算”的結論后,繼續向學生提問小數計算中為什么每一位都要對齊,實現“計數單位統一后才能計算”這一數學模型的構建。在這樣的教學過程中,學生可以加深對知識點的理解,實現數學建模思想的有效培養。
加強小學生數學建模思想的有效培養,需要在具體的教學活動開展中注重對數學思想的靈活運用,增強相關模型構建的可靠性,促使學生在長期的數學學習中能夠不斷提高自身的數學能力,運用各種數學知識處理實際問題。比如,在“角的度量”這部分內容講解的過程中,為了提高學生對角的分類及畫角相關知識點的深入理解,教師可以將所有的學生分為不同的小組,讓學生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學設備的合理運用,利用動態化的文字與圖片對其中的知識要點進行展示,確保學生們能夠在良好的教學模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創造性思維,強化自身的創新意識。比如,在講解“圖形變換”中的軸對稱、旋轉知識點的過程中,教師應通過對學生的正確引導,運用三角板、圓柱等教學輔助工具,讓學生從不同的角度對各種軸對稱圖形、旋轉后得到的圖形進行深入思考,提高自身數學建模過程中的創新能力,從不同的角度深入理解圖像變換過程,對這部分內容有更多的了解。因此,教師應注重小學生數學建模思想培養中多方位思考方式的針對性培養,提高學生的創新能力,優化學生的思維方式,全面提升小學數學建模教學水平。
總之,加強小學生數學建模思想培養策略的制定與實施,有利于滿足素質教育的更高要求,實現對小學生數學能力的有效鍛煉,確保相關的教學計劃能夠在規定的時間內順利地完成。與此同時,結合當前小學數學教育教學的實際發展概況,可知靈活運用各種科學的數學建模思想培養策略,有利于滿足學生數學建模學習中的多樣化需求,為相關教學目標的順利實現提供可靠的保障。
[1]童小艷.小學數學教學中培養學生建模思想的策略[j].學子(教育新理念),20xx(6).
[2]白寧.先學而后教——小學生數學建模思想培養的捷徑[j].數學學習與研究,20xx(16).