教學計劃是指教師在一段時間內對于教學內容、教學活動和教學目標進行規劃和安排的一種書面材料。教學計劃的質量和效果關系到教學的成敗,需要教師充分的準備和周密的安排。
一次函數與二元一次方程課教學設計大全(18篇)篇一
作為一位杰出的教職工,編寫教學設計是必不可少的,教學設計是把教學原理轉化為教學材料和教學活動的計劃。那么優秀的教學設計是什么樣的呢?以下是小編為大家收集的二元一次方程與一次函數教學設計,歡迎閱讀與收藏。
2、能根據一次函數的圖像求二元一次方程組的近似值。
1、用作圖像法求二元一次方程組的近似值。
1、做圖像時要標準、精確,近似值才接近。
先自學課本,用心思考自主學習部分,努力獨立完成,再與其他同學討論未明白的內容。課上展示,針對自己不明白問題多聽多問。
問題1、
(1)方程x+y=5的解有多少組?寫出其中的幾組解。
(3)在一次函數y=5—x的圖像上任取一點,它們的坐標適合方程x+y=5嗎?
(5)由以上的探究過程,你發現了什么?
問題2、
(3)由以上探究過程,我們發現解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發現可以利用解二元一次方程組的方法求兩條直線交點的坐標。
合作探究:
(1)用做圖像的方法解方程組。
(2)用解方程的方法求直線y=4—2x與直線y=2x—12交點。
一次函數與二元一次方程課教學設計大全(18篇)篇二
過程與方法。
(2)通過“做一做”引入例1,進一步發展學生數形結合的意識和能力。
情感與態度。
(1)在探究二元一次方程和一次函數的對應關系中,在體會近似解與準確解中,培養學生勤于思考、精益求精的精神。
(2)在經歷同一數學知識可用不同的數學方法解決的過程中,培養學生的創新意識和變式能力。
教學重點。
教學難點。
數形結合和數學轉化的思想意識。
教學準備。
教具:多媒體課件、三角板。
學具:鉛筆、直尺、練習本、坐標紙。
教學過程。
第一環節:設置問題情境,啟發引導(5分鐘,學生回答問題回顧知識)。
內容:
1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數y=的圖像上嗎?
3.在一次函數y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數y=的圖像相同嗎?
由此得到本節課的第一個知識點:
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程。
第二環節自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。
內容:
1.解方程組。
2.上述方程移項變形轉化為兩個一次函數y=和y=2x,在同一直角坐標系內分別作出這兩個函數的圖像。
(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數表達式聯立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
第三環節典型例題(10分鐘,學生獨立解決)。
探究方程與函數的相互轉化。
內容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是。
第四環節反饋練習(10分鐘,學生解決全班交流)。
內容:
1.已知一次函數與的圖像的交點為,則。
2.已知一次函數與的圖像都經過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。
(a)4(b)5(c)6(d)7。
3.求兩條直線與和軸所圍成的三角形面積。
4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環節課堂小結(5分鐘,師生共同總結)。
內容:以“問題串”的形式,要求學生自主總結有關知識、方法:
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程。
2.方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強調的是由于作圖的不準確性,由圖像法求得的解是近似解。
第六環節作業布置。
習題7.7a組(優等生)1、2、3b組(中等生)1、2c組1、2。
一次函數與二元一次方程課教學設計大全(18篇)篇三
2、了解二元一次方程和二元一次方程組的解并會檢驗一對數值是不是二元一次方程(組)的解。
重點:二元一次方程(組)的含義及檢驗一對數是否是某個二元一次方程(組)的解。
1、知識回顧:
(1)方程的概念;
(2)一元一次方程的概念;
(3)什么是方程的解?
(4)一元一次方程的解如何表示?
2、合作學習:
如果設需要票額為6角的郵票x張,需要票額為8角的郵票y張,你能列出方程嗎?
一次函數與二元一次方程課教學設計大全(18篇)篇四
知識目標:了解二元一次方程、二元一次方程組及其解等有關概念,并會判斷一組數是不是某個二元一次方程組的解。
能力目標:通過討論和練習,進一步培養學生的觀察、比較、分析的能力。
情感目標:通過對實際問題的分析,使學生進一步體會方程是刻畫現實世界的有效數學模型,培養學生良好的數學應用意識。
判斷一組數是不是某個二元一次方程組的解,培養學生良好的數學應用意識。
一、引入、實物投影。
2、請每個學習小組討論(討論2分鐘,然后發言)。
這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數,我們設老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數比小馬多2個,由此得方程x-y=2,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)。
師:同學們能用方程的。方法來發現、解決問題這很好,上面所列方程有幾個未知數?含未知數的項的次數是多少?(含有兩個未知數,并且所含未知數項的次數是1)。
師:含有兩個未知數,并且含未知數項的次數都是1的方程叫做二元一次方程。
一次函數與二元一次方程課教學設計大全(18篇)篇五
本節課是在學生已經探究過一次函數、一元一次方程及一元一次不等式的聯系的基礎上進行的學習。本節教學內容是《一次函數與一元二次方程(組)》,“一個二元一次方程對應一個一次函數,一般地一個二元一次方程組對應兩個一次函數,因而也對應兩條直線。如果一個二元一次方程組有唯一的解,那么這個解就是方程組對應的兩條直線的交點的坐標”。通過本節課的學習,讓學生能從函數的角度動態地分析方程(組),提高認識問題的水平。
本節課的引入。我通過一個一次函數形式問題提問,學生看出既是一次函數,也是二元一次方程,由此創設情境,引出一次函數與方程有必然的關系,使學生主動投入到一次函數與二元一次方程(組)關系的探索活動中;緊接著,用一連串的問題引導學生自主探索、合作交流,從數和形兩個角度認識它們的關系,使學生真正掌握本節課的重點知識。
在探究過程中,我把學生分為一個函數組一個方程組,使學生能身臨其境感受知識,并及時的進行團結合作教育,把德育教育滲透在教學中。在探究中,我把握自己是組織者、引導者和合作者的身份,及時引導學生進行知識探究。但在實際操作過程中還是把握的不夠好,沒有很好的起到引導者的作用,缺乏情感性的鼓勵,沒有使大多數學生能完全積極融入到的知識的探討與學習中。
本節的圖象解法需要迅速畫出圖象,利用圖象解決問題。而我的失誤主要發生在畫圖象上。大部分學生不能迅速畫出圖象,并找準交點,這就使他們理解本節知識有了困難。
為了培養學生的發散思維和規范解題的習慣,我引導學生將“上網收費”問題延伸為拓展應用題,根據前面的例題教學,設置了兩個小問題:
(1)上網時間為多少時,按方式a比較劃算?
(2)上網時間為多少時,按方式b比較劃算?
前后呼應,使學生有效地理解本節課的難點。但在此題的探討過程中,我做的不夠好,沒有給學生充分思考的時間及學生探討解決問題的方法,有點操之過急,而且我當時也沒有采取補救措施,這是我的失誤,也是這節課的失敗之處。
一次失誤也反映了一位老師駕馭課題的能力,今后,在我的課堂教學中要注重培養這種能力,關注細節,完善課堂和各個環節,不留遺憾,提高教育教學質量。
一次函數與二元一次方程課教學設計大全(18篇)篇六
(2)通過“做一做”引入例1,進一步發展學生數形結合的意識和能力。
(1)在探究二元一次方程和一次函數的對應關系中,在體會近似解與準確解中,培養學生勤于思考、精益求精的精神。
(2)在經歷同一數學知識可用不同的數學方法解決的過程中,培養學生的創新意識和變式能力。
(2)二元一次方程組和對應的兩條直線的關系。
數形結合和數學轉化的思想意識。
教具:多媒體課件、三角板。
學具:鉛筆、直尺、練習本、坐標紙。
第一環節:設置問題情境,啟發引導(5分鐘,學生回答問題回顧知識)。
內容:
1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數y=的圖像上嗎?
3.在一次函數y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數y=的圖像相同嗎?
由此得到本節課的第一個知識點:
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
第二環節自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。
內容:
1.解方程組。
2.上述方程移項變形轉化為兩個一次函數y=和y=2x,在同一直角坐標系內分別作出這兩個函數的圖像。
(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數表達式聯立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
第三環節典型例題(10分鐘,學生獨立解決)。
探究方程與函數的相互轉化。
內容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是。
第四環節反饋練習(10分鐘,學生解決全班交流)。
內容:
1.已知一次函數與的圖像的交點為,則。
2.已知一次函數與的圖像都經過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。
(a)4(b)5(c)6(d)7。
3.求兩條直線與和軸所圍成的三角形面積。
4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環節課堂小結(5分鐘,師生共同總結)。
內容:以“問題串”的形式,要求學生自主總結有關知識、方法:
1.二元一次方程和一次函數的。圖像的關系;
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
2.方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強調的是由于作圖的不準確性,由圖像法求得的解是近似解。
第六環節作業布置。
習題7.7a組(優等生)1、2、3b組(中等生)1、2c組1、2。
一次函數與二元一次方程課教學設計大全(18篇)篇七
本節課的教學設計反思是圍繞著今天“六個有效”的主題活動展開反思的。
學生已初步掌握了函數的概念、一次函數的圖象及性質,并了解了函數的三種表達方式:圖象法、列表法、解析式法。在此基礎上通過知識提問引導學生進一步掌握一次函數的相關知識并能靈活的應用到習題中,有效的“復習回顧”在本節課起到了承上啟下的作用。
根據實際的問題情境感受生活中的一次函數,利用已知的條件,來確定一次函數中正比例函數表達式,并理解確定正比例函數表達式的方法和條件。
設置這個例題是物理學中的一個彈簧現象,目的在于讓學生從不同的情景中獲取信息來求一次函數表達式,一次函數表達式的確定需要兩個條件,能由條件利用“待定系數”法求出一些簡單的一次函數表達式,并能解決有關現實問題.并進一步體會函數表達式是刻畫現實世界的一個很好的數學模型,而且體現了數學這門學科的基礎性。
通過對求一次函數表達式方法的歸納和提升,加強學生對求一次函數表達式方法和步驟的理解,通過“感悟收獲”解決本節課的重點和難點。
通過分小組“比一比、練一練”的活動形式,不僅激發了學生學習數學知識的興趣,而且能將本節課的知識靈活的應用到習題中,提高了學生的解題能力和思維能力。
根據本班學生及教學情況在教學課堂后為了進一步鞏固課堂知識,布置一定量的作業,難度不應過大,有效的作業更能拓展學生的思維,并體會解決問題的多樣性。
一次函數與二元一次方程課教學設計大全(18篇)篇八
一.教學目標:
1.認知目標:
2)理解二元一次方程組的解的概念。
3)會用列表嘗試的方法找二元一次方程組的解。
2.能力目標:
1)滲透把實際問題抽象成數學模型的思想。
2)通過嘗試求解,培養學生的探索能力。
3.情感目標:
1)培養學生細致,認真的學習習慣。
2)在積極的教學評價中,促進師生的情感交流。
二.教學重難點。
難點:用列表嘗試的方法求出方程組的解。
三.教學過程。
(一)創設情景,引入課題。
1.本班共有40人,請問能確定男*各幾人嗎?為什么?
(1)如果設本班男生x人,*y人,用方程如何表示?(x+y=40)。
(2)這是什么方程?根據什么?
2.男生比*多了2人。設男生x人,*y人。方程如何表示?x,y的值是多少?
3.本班男生比*多2人且男*共40人。設該班男生x人,*y人。方程如何表示?
兩個方程中的x表示什么?類似的兩個方程中的y都表示?
象這樣,同一個未知數表示相同的量,我們就應用大括號把它們連起來組成一個方程組。
[設計意圖:從學生身邊取數據,讓他們感受到生活中處處有數學]。
(二)探究新知,練習鞏固。
(1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。
[讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解。]。
x+y=3,x+y=200,。
2x-3=7,3x+4y=3。
y+z=5,x=y+10,。
2y+1=5,4x-y2=2。
學生作出判斷并要說明理由。
(1)由學生給出引例的答案,教師指出這就是此方程組的解。
(2)練習:把下列各組數的題序填入圖中適當的位置:
x=1;x=-2;x=;-x=。
y=0;y=2;y=1;y=。
方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。
2x+3y=2。
(3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。
(4)練習:已知x=0是方程組x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
(三)合作探索,嘗試求解。
現在我們一起來探索如何尋找方程組的解呢?
1.已知兩個整數x,y,試找出方程組3x+y=8的解。
2x+3y=10。
學生兩人一小組合作探索。并讓已經找出方程組解的學生利用實物投影,講明自己的解題思路。
提煉方法:列表嘗試法。
一般思路:由一個方程取適當的xy的值,代到另一個方程嘗試。
2.據了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。
(1)設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。
由學生獨立完成,并分析講解。
(四)課堂小結,布置作業。
1.這節課學哪些知識和方法?(二元一次方程組及解概念,列表嘗試法)。
2.你還有什么問題或想法需要和大家交流?
3.作業本。
教學設計說明:
1.本課設計主線有兩條。其一是知識線,內容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環環相扣,層層遞進;第二是能力培養線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。
2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數據,得出結果,再讓他們在積極嘗試后進行講解,實現生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。
3.本課在設計時對教材也進行了適當改動。例題方面考慮到數*時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。
2022初中語文優秀教師教案范文-語文優秀教案模板范文。
標準教案范文精選。
一次函數與二元一次方程課教學設計大全(18篇)篇九
3、會將一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。
情感與態度目標。
2、通過對實際問題的分析,培養關注生活,進一步體會方程是刻畫現實世界的有效數學模型,培養良好的數學應用意識。
重點:二元一次方程的概念及二元一次方程的解的概念。
難點。
1、了解二元一次方程的解的不唯一性和相關性。即了解二元一次方程的解有無數個,但不是任意的兩個數是它的解。
2、把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。
1、通過創設問題情境,讓學生在尋求問題解決的過程中認識二元一次方程,了解二元一次方程的特點,體會到二元一次方程的引入是解決實際問題的需要。
2、通過觀察、思考、交流等活動,激發學習情緒,營造學習氣氛,給學生一定的時間和空間,自主探討,了解二元一次方程的解的不唯一性和相關性。
3、通過學練結合,以游戲的形式讓學生及時鞏固所學知識。
創設情境導入新課。
1、一個數的3倍比這個數大6,這個數是多少?
師生互動探索新知。
1、發現新知。
根據它們的共同特征,你認為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個未知數,且含有未知數的項的次數都是一次的方程叫做二元一次方程。)。
2、鞏固新知。
相同點:方程兩邊都是整式,含有未知數的項的次數都是一次。
如果一個方程含有兩個未知數,并且所含未知項都為1次方,那么這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。
它山之石可以攻玉,以上就是為大家帶來的3篇《一次函數與二元一次方程課教學設計》,您可以復制其中的精彩段落、語句,也可以下載doc格式的文檔以便編輯使用。
一次函數與二元一次方程課教學設計大全(18篇)篇十
本節課通過探索“方程”與“函數圖像”的關系,培養學生數學轉化的思想,通過學習二元一次方程方程組的解與直線交點坐標之間的關系,使學生初步建立了“數”(二元一次方程)與“形”(一次函數的圖像)之間的對應關系,進一步培養了學生數形結合的意識和能力.因此確定本節課的教學目標為:
3.發展學生數形結合的意識和能力,使學生在自主探索中學會不同數學模型間的聯系.。
教學重點。
教學難點。
通過對數學模型關系的探究發展學生數形結合和數學轉化的思想意識.。
1.教法學法。
啟發引導與自主探索相結合.。
2.課前準備。
教具:多媒體課件、三角板.。
學具:鉛筆、直尺、練習本、坐標紙.。
1.某水箱有5噸水,若用水管向外排水,每小時排水1噸,則x小時后還剩余y噸水.
(1)請找出自變量和因變量。
(2)你能列出x,y的關系式嗎。
(3)x,y的取值范圍是什么。
(4)在平面直角坐標系中畫出這個函數的圖形.(注意xy的取值范圍).
2.(1)方程x+y=5的解有多少個?你能寫出這個方程的幾個解嗎?
(3).在一次函數y=x5的圖像上任取一點,它的坐標適合方程x+y=5嗎?
x+y=5與y=x5表示的關系相同。
1.兩個一次函數圖象的交點坐標是相應的二元。
(2)兩個函數的交點坐標適合哪個方程?
xy5(3).解方程組驗證一下你的發現。2xy1。
練習:隨堂練習1。鞏固由一次函數的交點坐標找相應的二元一次方程組的解。
xy2(1)解。
2xy5(2)以方程x+y=2。
(3)以方程2x+y=5(4)方程組的解為坐標的點在圖象上是哪個點?
練習:知識技能1。鞏固由方程組的解求相應的一次函數的交點坐標。更深入的體會二元一次方程組的解與一次函數交點坐標之間的對應關系。
第三環節模型應用。
1.某公司要印制產品宣傳材料.
印刷廠的費用。
(1)請分別表示出兩個印刷廠費用與x的關系式。
(2)在同一直角坐標系中畫出函數的圖象。
(3)如何根據印刷材料的份數選擇印刷廠比較合算?
第四環節模型特例。
想一想。
么?
(1)觀察發現直線平行無交點;
(2)小組研究計算發現方程組無解;
(3)從側面驗證了兩直線有交點,對應的方程組有解,反之也成立;
(4)歸納小結:兩平行直線的k相等;方程組中兩方程未知數的系數對應成比例方程組無解。
進一步培養了學生數形結合的意識和能力,充分展示了方程與函數的相互轉化.進一步挖掘出兩直線平行與k的關系。
第五環節課堂小結。
內容:以“問題串”的形式,要求學生自主總結有關知識、方法:
一次函數圖像上的點的坐標都適合相應的二元一次方程.。
2.方程組和對應的兩條直線的關系:
方程組的解是對應的兩條直線的交點坐標;
兩條直線的交點坐標是對應的方程組的解;
第六環節作業布置。
習題5.7。
一次函數與二元一次方程課教學設計大全(18篇)篇十一
(3)通過學生的思考和操作,力圖提示出方程與圖象之間的關系,引入二元一次方程組的圖象解法。同時培養學生初步的數形結合的意識和能力。
2.情感態度價值觀目標。
通過學生的自主探索,提示出方程和圖象之間的對應關系,加強新舊知識的聯系,培養學生的創新意識,激發了學生學習數學的興趣,使學生體驗數學活動充滿探索與創造。
前面已經分別學習了一次函數和二元一次方程組,這節課研究二元一次方程組(數)和一次函數(形)的關系,是這兩章知識的綜合運用。強化了部分與整體的內在聯系,知識與知識的內在聯系,并為今后解析幾何的學習奠定基礎。
2、能根據一次函數的圖象求二元一次方程組的近似解。
方程和函數之間的對應關系即數形結合的意識和能力。
學生操作——————自主探索的方法。
學生通過自己操作和思考,結合新舊知識的聯系,自主探索出方程與圖象之間的對應關系,以引入二元一次方程組的圖象解法,同時也建立了“數”————二元一次方程組和“形”————函數的圖象(直線)之間的對應關系,培養了學生數形結合的意識和能力。
一.故事引入。
迪卡兒的故事——————蜘蛛給予的啟示。
在蜘蛛爬行的啟示下,迪卡兒創建了直角坐標系,在坐標系下幾何圖形(形)和方程(數)建立聯系。迪卡兒坐標系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。
二.嘗試探疑。
1、y=x+1。
你們把我叫一次函數,我也是二元一次方程啊!這是怎么回事,你知道嗎?
學生先是疑惑:方程就是方程,函數就是函數,它們能有什么聯系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數與二元一次方程的內在聯系。
2、函數y=x+1上的任意一點的坐標是否滿足方程x—y=—1?
學生會迫不及待地拿起筆來計算。從函數y=x+1圖象上找幾個點看它們的坐標是否滿足方程x—y=—1。結果都滿足。然后學生就會自主和同伴交流,問一問同伴函數y=x+1圖象上的點滿足不滿足方程x—y=—1。結果也都滿足。這樣他們就會搭成共識:函數y=x+1上的任意一點的坐標都滿足方程x—y=—1。
然后學生會用同樣的方法得出另一個結論:以方程x—y=—1的解為坐標的點一定在函數y=x+1的圖象上。然后開始思索函數y=x+1和方程x—y=—1到底有何關系呢?通過交流自動得出結論:以方程x—y=—1的解為坐標的點組成的圖象與一次函數y=x+1的圖象相同。
3。在同一坐標系下,化出y=x+1與y=4x—2的圖象,他們的交點坐標是什么?
方程組y=x+1的解是什么?二者有何關系?
y=4x—2。
y=x+1的解。
y=4x—2。
教師作最后總結:因為函數和方程有以上關系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。
解方程組x—2y=—2。
2x—y=2。
學生會很快的用消元法解出來。
老師發問:誰還有其他的方法?如果有,鼓勵學生大膽提出。并給予口頭表揚。如果沒有人用其他的方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時,學生就會去探索新的思路、方法。
一回憶方程與函數的關系,有了!方程組的解不就是兩個方程變形得到的兩個函數圖象的交點坐標嗎?學生就會迅速動筆用這種方法把方程解出來。作完之后,互相交流。學生總結一下做題步驟:
1。把兩個方程都化成函數表達式的形式。
2。畫出兩個函數的圖象。
3。畫出交點坐標,交點坐標即為方程組的解。
問題又出來了,有的同學的解是x=2有的同學的解是x=2。1y=2。1。
y=1。9有的同學的解是……雖然都和消元法得到的結果相近,但各不相同。
老師提問:你能說一下用圖象法解方程組的不足嗎?
學生爭先恐后的回答:用這種方法求的解是近似值。不準確。學生提出疑問:既然不準確,那學習它有什么用呢?用消元法就足夠了!
教師解釋一下:在現實生活和生產中,我們會遇到特別復雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數圖象,很容易找出交點坐標。教師可以用z+z智能教育平臺演示一下。
[點評]用作圖象的方法解方程組,這體現了兩個知識點的內在聯系。學數學知識,探索知識點之間的聯系,可起到化新為舊的作用,達到事半功倍的效果。逐步讓學生學會這種學習新知識的技巧。
四.引申。
方程組x+y=2。
x+y=5解的情況如何?你能從函數的角度解釋一下嗎?
學生用消元法開始解方程組,結果無解,怎么回事呢?學生會嘗試運用方程組的圖象解法。畫出兩個函數圖象。答案有了!圖象是平行的,沒有交點。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。
[點評]因為有了上面的用作圖象法解方程組,在這里,學生就會自覺地從函數的角度探究方程的問題,初步具有了數形結合的意識和能力。
五.課后小結。
本節課我們通過操作和思考,揭示了二元一次方程和函數圖象之間的對應關系,從而引入二元一次方程組的圖象解法,同時也建立了“數”————二元一次方程與“形”——————函數圖象之間的對應關系,培養了學生初步的數形結合的意識和能力。
六.作業。
1。用作圖象法解方程組2x+y=4。
2x—3y=12。
2。如圖,直線l、l相交于點a,試求出a點坐標。
一次函數與二元一次方程課教學設計大全(18篇)篇十二
本節課是在學生已經學會從單個一次函數的圖象分析獲取信息,進而解決有關實際問題的基礎上展開的。因此,本節課的重點應該放在怎樣從兩個函數圖象的比較、分析中提取有用信息,弄清兩者之間的聯系,從而提高學生的識圖能力與解決實際問題的能力。難點在于怎樣抓住有用的特征去分析、比較。于是,本節課的基本思路是以學生熟悉的一次函數的圖象及性質為鋪墊,以學生感興趣的現實問題作素材,以交流合作為主要形式展開學習活動。
例1:某種摩托車的油箱最多可儲油10升,加滿油后,油箱中的剩余油量y(升)與摩托車行駛路程x(千米)之間的關系引伸的問題帶來了挑戰性的懸念。只有讓學生在探索問題之中學會提出問題,才能最終體驗到數學的抽象,形成穩定的學習興趣。
2、本節課充分體現了學生在自主探索與合作交流中學會學習這一理念,學生有足夠的自主探索時間,有與同學合作互動的空間,有與老師交流表達的機會。學生不是從老師那里獲取知識,而是在數學活動的過程中發現規律、體驗成功。
3、本節課通過函數圖象獲取信息,解決實際問題,培養學生的形象思維及數學應用能力,同時培養學生良好的環保意識和熱愛生活的意識及利用函數圖象解決簡單的實際問題通過方程與函數關系的研究,建立良好的知識聯系。
1、個別差生的積極性還未調動起來,還須探索出關注差生的方法來提高教學及格率。
2、在分析一次函數表達式時,在課本上用的“數形結合”方法可另外用“待定系數法”分析;以便學生能拓展思維。
一次函數與二元一次方程課教學設計大全(18篇)篇十三
教材通過引例對圖像方法與代數方法的比較,使學生了解解決應用問題的策略和方法是多樣性的,同時也使學生理解圖像方法與代數方法在解決具體問題中各自的優劣,從而對方法作出正確的選擇.對于教材的這一方面的使用,教師應根據自己學生的特點,選擇合理的方式去讓學生理解不同方法去解決同一問題。
本節課主要要求學生能夠利用二元一次方程組解決一次函數的解析式問題,根據一次函數解析式進一步解決相關的一些問題。要讓學生理解為什么要用二元一次方程組去求解一次函數的解析式的必要性,從而掌握本堂課的基礎知識。在教學的過程中,要讓學生充分理解圖像方法和代數方法解決問題的特點,在這個基礎上,學生掌握用二元一次方程組解決一次函數的解析式問題才會有著堅實的理論基礎,有關這一方面的題目要讓學生充分討論,其理解才會深刻;同時要以這一部分的知識為載體,結合教材例題,在補充分段圖形題,甚至表格題,讓學生充分理解用方程的思想去解決函數問題。
一次函數與二元一次方程課教學設計大全(18篇)篇十四
把具有相同未知數的兩個二元一次方程合在一起,就組成了一個二元一次方程組.
此外,組成方程組的各個方程也不必同時含有兩個未知數.
二.會檢驗一組數是不是某個二元一次方程組的解;。
滿足每一個方程,只有這組數滿足方程組中的所有方程時,該組數才是原方程組的解,否則不是。
三.會用代入法和加減法解二元一次方程組,了解代入消元法和加減消元法的基本思想;。
代入法消元:
1.代入消元法是解方程組的兩種基本方法之一。代入消元法就是把方程組其中一個方程的某個未知數用含另一個未知數的代數式表示,然后代入另一個方程,消去一個未知數,將二元一次方程組轉化為一元一次方程來解。這種解二元一次方程組的方法叫代入消元法,簡稱代入法。
(2)將變形后的這個關系式代入另一個方程,消去一個未知數,得到一個一元一次方程;。
(3)解這個一元一次方程,求出一個未知數的值;。
(4)將求得的這個未知數的值代入變形后的關系式中,求出另一個未知數的值;。
加減法消元:
1.加減消元法是解二元一次方程組的基本方法之一,加減消元法是通過將兩個方程相加(或相減)消去一個未知數,將二元一次方程組轉化為一元一次方程來解,這種解法叫做加減消元法,簡稱加減法。
(3)解這個一元一次方程,求得其中一個未知數的值;。
4.能夠根據題目特點熟練選用代入法或加減法解二元一次方程組;。
5.能借助二元一次方程組解決一些實際問題,使用代數方法去反應現實生活中的等量關系,體會代數方法的優越性.
一次函數與二元一次方程課教學設計大全(18篇)篇十五
“解二元一次方程組”是“二元一次方程組”一章中很重要的知識,占有重要的地位、通過本節課的教學,使學生會用代入消元法和加減消元法解二元一次方程組;了解“消元”思想。
教學后發現,大部分學生能掌握二元一次議程組的解法,教學一開始給出了一個二元一次方程組。提問:含有兩個未知數的方程我們沒有學習過怎樣解,那么我們學過解什么類型的方程?答:一元一次方程。
提問:那可怎么辦呢?這時,學生通過交流,教師只要略加指導,方法自然得出,這其中也體現了化歸思想,教學的最后給出了一個三元一次方程組,同樣也沒有學過它的解法,那學過什么類型的方程組,這時又怎么辦呢?與教學開始時方法一樣,但這時不需點拔、指導,學生按“消元”“化歸”的思想,化“三元”為“二元”,化“二元”為“一元”,這對學生今后獨立解決總是無疑是種好的方法。
有個別同學在選擇方法上:是用代入法還是加減法,很猶豫,解答起來速度較慢,只要多加練習,一定會即快又準。
一次函數與二元一次方程課教學設計大全(18篇)篇十六
學習目標:
2、能根據一次函數的圖像求二元一次方程組的近似值。
學習重點:
學習難點:
1、做圖像時要標準、精確,近似值才接近。
學習方法:
先自學課本,用心思考自主學習部分,努力獨立完成,再與其他同學討論未明白的內容。課上展示,針對自己不明白問題多聽多問。
自主學習部分:
問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。
(3)在一次函數y=5-x的圖像上任取一點,它們的坐標適合方程x+y=5嗎?
(5)由以上的探究過程,你發現了什么?
(3)由以上探究過程,我們發現解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發現可以利用解二元一次方程組的方法求兩條直線交點的坐標。
合作探究:
(1)用做圖像的方法解方程組。
(2)用解方程的方法求直線y=4-2x與直線y=2x-12交點。
一次函數與二元一次方程課教學設計大全(18篇)篇十七
1.知識與能力目標。
(3)通過學生的思考和操作,力圖提示出方程與圖象之間的關系,引入二元一次方程組的圖象解法。同時培養學生初步的數形結合的意識和能力。
2.情感態度價值觀目標。
通過學生的自主探索,提示出方程和圖象之間的對應關系,加強新舊知識的聯系,培養學生的創新意識,激發了學生學習數學的興趣,使學生體驗數學活動充滿探索與創造。
教材分析。
前面已經分別學習了一次函數和二元一次方程組,這節課研究二元一次方程組(數)和一次函數(形)的關系,是這兩章知識的綜合運用。強化了部分與整體的內在聯系,知識與知識的內在聯系,并為今后解析幾何的學習奠定基礎。
教學重點。
教學難點。
方程和函數之間的對應關系即數形結合的意識和能力。
教學方法。
學生操作------自主探索的方法。
學生通過自己操作和思考,結合新舊知識的聯系,自主探索出方程與圖象之間的對應關系,以引入二元一次方程組的圖象解法,同時也建立了“數”----二元一次方程組和“形”----函數的圖象(直線)之間的對應關系,培養了學生數形結合的意識和能力。
教學過程。
一、故事引入。
迪卡兒的故事------蜘蛛給予的啟示。
在蜘蛛爬行的啟示下,迪卡兒創建了直角坐標系,在坐標系下幾何圖形(形)和方程(數)建立聯系。迪卡兒坐標系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。
二、嘗試探疑。
1、y=x+1。
你們把我叫一次函數,我也是二元一次方程啊!這是怎么回事,你知道嗎?
學生先是疑惑:方程就是方程,函數就是函數,它們能有什么聯系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數與二元一次方程的內在聯系。
2、函數y=x+1上的任意一點的坐標是否滿足方程x-y=-1?
學生會迫不及待地拿起筆來計算。從函數y=x+1圖象上找幾個點看它們的坐標是否滿足方程x-y=-1。結果都滿足。然后學生就會自主和同伴交流,問一問同伴函數y=x+1圖象上的點滿足不滿足方程x-y=-1。結果也都滿足。這樣他們就會搭成共識:函數y=x+1上的任意一點的坐標都滿足方程x-y=-1。
然后學生會用同樣的方法得出另一個結論:以方程x-y=-1的解為坐標的點一定在函數y=x+1的圖象上。然后開始思索函數y=x+1和方程x-y=-1到底有何關系呢?通過交流自動得出結論:以方程x-y=-1的解為坐標的點組成的圖象與一次函數y=x+1的圖象相同。
3.在同一坐標系下,化出y=x+1與y=4x-2的圖象,他們的交點坐標是什么?
方程組y=x+1的解是什么?二者有何關系?
y=4x-2。
y=x+1的解。
y=4x-2。
教師作最后總結:因為函數和方程有以上關系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。
解方程組x-2y=-2。
2x-y=2。
學生會很快的用消元法解出來。
老師發問:誰還有其他的方法?如果有,鼓勵學生大膽提出。并給予口頭表揚。如果沒有人用其他的`方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時,學生就會去探索新的思路、方法。
一回憶方程與函數的關系,有了!方程組的解不就是兩個方程變形得到的兩個函數圖象的交點坐標嗎?學生就會迅速動筆用這種方法把方程解出來。作完之后,互相交流。學生總結一下做題步驟:
1.把兩個方程都化成函數表達式的形式。
2.畫出兩個函數的圖象。
3.畫出交點坐標,交點坐標即為方程組的解。
問題又出來了,有的同學的解是x=2有的同學的解是x=2.1y=2.1。
y=1.9有的同學的解是……雖然都和消元法得到的結果相近,但各不相同。
老師提問:你能說一下用圖象法解方程組的不足嗎?
學生爭先恐后的回答:用這種方法求的解是近似值。不準確。學生提出疑問:既然不準確,那學習它有什么用呢?用消元法就足夠了!
教師解釋一下:在現實生活和生產中,我們會遇到特別復雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數圖象,很容易找出交點坐標。教師可以用z+z智能教育平臺演示一下。
用作圖象的方法解方程組,這體現了兩個知識點的內在聯系。學數學知識,探索知識點之間的聯系,可起到化新為舊的作用,達到事半功倍的效果。逐步讓學生學會這種學習新知識的技巧。
四、引申。
方程組x+y=2。
x+y=5解的情況如何?你能從函數的角度解釋一下嗎?
學生用消元法開始解方程組,結果無解,怎么回事呢?學生會嘗試運用方程組的圖象解法。畫出兩個函數圖象。答案有了!圖象是平行的,沒有交點。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。
因為有了上面的用作圖象法解方程組,在這里,學生就會自覺地從函數的角度探究方程的問題,初步具有了數形結合的意識和能力。
五、課后小結。
本節課我們通過操作和思考,揭示了二元一次方程和函數圖象之間的對應關系,從而引入二元一次方程組的圖象解法,同時也建立了“數”----二元一次方程與“形”------函數圖象之間的對應關系,培養了學生初步的數形結合的意識和能力。
六、作業。
1.用作圖象法解方程組2x+y=4。
2x-3y=12。
2.如圖,直線l、l相交于點a,試求出a點坐標。
教學反思。
這節課由故事引入,激發了學生極大的學習興趣。然后提出了三個尖銳的問題,讓學生嘗試探索,在探索中既體會到了探索的艱辛,又體會到了成功的喜悅。在應用和引申過程中,盡量讓學生自主的發現問題,自主的解決問題。學生在緊張、愉快中完成了這節課的學習。
一次函數與二元一次方程課教學設計大全(18篇)篇十八
(1)給出一個實際問題請同學們來分析題目,設出未知數,尋找相等關系,列出方程,當然前提是設兩個未知數,得到一個二元一次方程組,然后給出概念,提醒學生要注意概念中是含有兩個未知數的兩個一次方程所組成的,接下來就給出幾個判斷鞏固定義。
(3)做書本上的習題。這次備這節課時,我就想到以前上這課很沒有意思,學生覺得內容很簡單很枯燥,根據簡單的實際問題來列方程組對他們而言也不是難事。在備課時我就從學生的角度去看教材,既然內容簡單那就讓學生自學為主。所以我今天上課的流程變成先出事兩個問題情境(列二元一次方程組解決),然后直接給出本堂課的內容:二元一次方程、二元一次方程的解、二元一次方程組以及二元一次方程組的解的概念,請同學們根據名稱思考,并舉例說明。給他們幾分鐘時間思考以后,就請學生來當小老師,上黑板來講,也有同學覺得小老師講的不夠清楚,又上來重講的,一共請了3名同學,有同學提出的問題很簡單,也有同學提出了一個引起大家爭議的問題,就是x=3,x+y=4這樣的方程組是不是二元一次方程組,在大家爭論以后我給出了正確答案以及這個概念中的注意點。最后在請學生來總結今天所學到的主要內容和注意點。